• "科林明伦杯"哈尔滨理工大学第八届程序设计竞赛 题解


    题目链接  Problems

    Problem A

    快速幂累加即可。

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    LL ans = 0;
    LL n, d;
    int T;
    
    const LL mod = 1e9 + 7;
    
    inline LL Pow(LL a, LL b, LL Mod){
            LL ret(1);
            for (; b; b >>= 1, (a *= a) %= Mod) if (b & 1) (ret *= a) %= Mod;
            return ret;
    }
    
    
    int main(){
    
    	scanf("%d", &T);
    	while (T--){
    		cin >> n >> d;
    		ans = 0;
    		rep(i, 1, n){
    			ans += Pow(i, d, mod);
    			ans %= mod;
    		}
    
    		printf("%lld
    ", ans);
    	}
    
    	return 0;
    }
    

    Problem B

    对于每个帮派,并查集维护就可以了。

    求第$k$大的时候树状数组上二分就好了。

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    const int N = 1e5 + 10;
    
    int T;
    int sz[N], c[N], father[N];
    int n, m;
    int num;
    
    void update(int x, int val){
    	for (; x <= n; x += x & -x) c[x] += val;
    }
    
    int query(int x){
    	int ret = 0;
    	for (; x; x -= x & -x) ret += c[x];
    	return ret;
    }
    
    int getfather(int x){
    	return father[x] == x ? x : father[x] = getfather(father[x]);
    }
    
    
    int main(){
    
    	scanf("%d", &T);
    	while (T--){
    		scanf("%d%d", &n, &m);
    		memset(c, 0, sizeof c);
    		memset(father, 0, sizeof father);
    		rep(i, 1, n) father[i] = i;
    
    		rep(i, 1, n) update(1, 1);
    		num = n;
    		rep(i, 1, n) sz[i] = 1;
    		while (m--){
    			int op;
    			scanf("%d", &op);
    			if (op == 1){
    				int x, y;
    				scanf("%d%d", &x, &y);
    				int fx = getfather(x), fy = getfather(y);
    				if (fx == fy) continue;
    
    				father[fy] = fx;
    
    				int f1 = sz[fx], f2 = sz[fy], f3 = sz[fx] + sz[fy];
    				sz[fx] += sz[fy];
    				sz[fy] = 0;
    				--num;
    
    				update(f1, -1);
    				update(f2, -1);
    				update(f3, 1);
    			}
    
    			else{
    				int x;
    				scanf("%d", &x);
    				if (num < x){
    					puts("-1");
    					continue;
    				}
    				int l = 1, r = n;
    				
    				while (l + 1 < r){
    					int mid = (l + r) >> 1;
    					if (num - query(mid - 1) >= x) l = mid;
    					else r = mid - 1;
    				}
    
    				if (num - query(r - 1) >= x) printf("%d
    ", r);
    				else printf("%d
    ", l);
    			}
    		}
    	}
    
    	return 0;
    }
    

    Problem C

    递推。$f_{n} = 2f_{n-1} + f_{n-3}$

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    const int A = 5;
    
    const LL mod = 1e9 + 7;
    
    struct matrix{ LL a[A][A];}  init, unit, aa;
    int n;
    LL m;
    int T;
    
    matrix Mul(matrix a, matrix b){
    	matrix c;
    	rep(i, 1, n) rep(j, 1, n){
    		c.a[i][j] = 0;
    		rep(k, 1, n) (c.a[i][j] += (a.a[i][k] * b.a[k][j] % mod)) %= mod;
    	}
    	return c;
    }
    
    matrix Pow(matrix a, LL k){
    	matrix ret(unit); for (; k; k >>= 1ll, a = Mul(a, a)) if (k & 1) ret = Mul(ret, a); return ret;
    }	
    
    
    
    int main(){
    
    	n = 3;
    
    	matrix dd;
    	memset(dd.a, 0, sizeof dd.a);
    
    	memset(unit.a, 0, sizeof unit.a);
    	rep(i, 1, n) unit.a[i][i] = 1ll;
    
    	dd.a[1][1] = 2; dd.a[1][2] = 0;  dd.a[1][3] = 1;
    	dd.a[2][1] = 1;
    	dd.a[3][2] = 1;
    
    	scanf("%d", &T);
    	while (T--){
    		scanf("%lld", &m);
    
    		LL fuck = m - 3;
    		if (m <= 3){
    			if (m == 1ll) puts("1");
    			if (m == 2ll) puts("2");
    			if (m == 3ll) puts("5");
    			continue;
    		}
    
    		matrix cc = Pow(dd, fuck);
    		
    		LL ans = cc.a[1][1] * 5ll + cc.a[1][2] * 2ll + cc.a[1][3] * 1ll;
    		ans %= mod;
    
    		printf("%lld
    ", ans);
    	}
    
    	return 0;
    }
    

    Problem D

    最坏的情况即为斐波那契数列中的某几项。

    那么当询问元素个数超过一定的时候(大概$87$)直接输出Yes就好了。

    否则就暴力特判。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    LL a[100010];
    LL c[100010];
    int n, q;
    int cnt = 0;
    
    
    int main(){
    
    	scanf("%d", &n);
    	rep(i, 1, n) scanf("%lld", a + i);
    
    	scanf("%d", &q);
    	while (q--){
    		int l, r;
    		scanf("%d%d", &l, &r);
    		if (r - l + 1 >= 100){
    			puts("Yes");
    			continue;
    		}
    		cnt = 0;
    		rep(i, l, r) c[++cnt] = a[i];
    
    		sort(c + 1, c + cnt + 1);
    
    
    		int fg = 0;
    		rep(i, 1, cnt - 2) if (c[i] + c[i + 1] > c[i + 2]){
    			fg = 1;
    			break;
    		}
    
    		puts(fg ? "Yes" : "No");
    	}
    
    	return 0;
    }
    

    Problem E

    分解质因数之后令$a_{i}$为每个质因数的指数。

    答案为

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    LL n;
    int T;
    LL bs;
    LL cc;
    LL ans;
    
    
    int main(){
    
    	while (~scanf("%d", &T)){
    		while (T--){
    			scanf("%lld", &n);
    			LL bs = sqrt(n);
    
    			ans = 1;
    
    			for (LL i = 2; i <= sqrt(n); ++i){
    				LL cc = 0;
    				while (n % i == 0) ++cc, n /= i;
    				ans *= (2 * cc + 1ll);
    			}
    
    			if (n > 1) ans *= 3;
    			++ans;
    			ans /= 2;
    			printf("%lld
    ", ans);
    		}
    	}
    
    	return 0;
    }
    

    Problem F

    答案为$2^{n-3} * n^{2} * (n+3)$

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    const LL mod = 1e9 + 7;
    
    int T;
    LL n, ans;
    
    inline LL Pow(LL a, LL b, LL Mod){
            LL ret(1);
            for (; b; b >>= 1, (a *= a) %= Mod) if (b & 1) (ret *= a) %= Mod;
            return ret;
    }
    
    int main(){
    
    	scanf("%d", &T);
    	while (T--){
    		scanf("%lld", &n);
    		if (n == 1ll){
    			puts("1");
    			continue;
    		}
    
    		if (n == 2ll){
    			puts("10");
    			continue;
    		}
    
    		if (n == 3ll){
    			puts("54");
    			continue;
    		}
    
    		LL ans = Pow(2, n - 3, mod);
    		ans *= n;
    		ans %= mod;
    		ans *= n;
    		ans %= mod;
    		ans *= (n + 3ll);
    		ans %= mod;
    
    		printf("%lld
    ", ans);
    	}
    
    
    	return 0;
    }
    

    Problem G

    从小到大枚举答案,每次做一遍极大极小搜索,若符合题意就直接输出。

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    const int N = 2e3 + 10;
    
    LL a[N];
    LL f[2][N];
    LL s[N];
    LL xxx;
    int n;
    int m;
    int ans;
    
    LL dp(int x, int pos){
    	if (~f[x][pos]) return f[x][pos];
    
    	if (pos == m){
    		if (x) return f[x][pos] = a[pos];
    		else return f[x][pos] = 0;
    	}
    
    	LL ret = 0;
    	if (x){	
    		ret = a[pos] + dp(x ^ 1, pos + 1);
    		ret = max(ret, dp(x, pos + 1));
    	}
    
    	else{
    		ret = dp(x ^ 1, pos + 1);
    		ret = min(ret, a[pos] + dp(x, pos + 1));
    	}
    
    	return f[x][pos] = ret;
    }
    
    int main(){
    
    	while (~scanf("%d", &n) && n != -1){
    		rep(i, 1, n) scanf("%lld", a + i);
    		scanf("%lld", &xxx);
    		s[0] = 0;
    		rep(i, 1, n) s[i] = s[i - 1] + a[i];
    		ans = -1;
    		for (m = 1; m <= n; ++m){
    			memset(f, -1, sizeof f);
    			LL gg = dp(1, 1);
    			if (gg >= xxx){
    				ans = m;
    				break;
    			}
    		}
    
    		printf("%d
    ", ans);			
    	}
    
    	return 0;
    }
    

    Problem H

    贪心。求出每个块的大小,然后枚举每个块。记块的个数为$cnt$

    两边的块如果有不小于$2$的,那么答案用$cnt + 1$更新。

    中间的块大小如果有不小于$3$的,那么答案用$cnt + 2$更新。

    UPD:哦草我好像没考虑0011然后翻转中间的0和1的情况,这也是一个case

    代码就不改乐

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    const int N = 1e5 + 10;
    
    int a[N];
    int c[N];
    int n, cnt, xx, now;
    int ans;
    
    
    int main(){
    
    	while (~scanf("%d", &n)){
    		rep(i, 1, n) scanf("%1d", a + i);
    
    		xx = -1;
    		cnt = -1; now = 0;
    		rep(i, 1, n){
    			if (a[i] != xx){
    				c[++cnt] = now;
    				now = 1;
    			}
    
    			else ++now;
    
    			xx = a[i];
    		}
    
    
    		c[++cnt] = now;
    		ans = cnt;
    		if (c[1] == 2 || c[cnt] == 2) ans = max(ans, cnt + 1);
    		rep(i, 1, cnt) if (c[i] >= 3) ans = max(ans, cnt + 2);
    		printf("%d
    ", ans);
    	}
    
    	return 0;
    }

    Problem I

    模拟题。

    #include <cstdio>
    #include <set>
    #include <string>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    typedef long long LL;
    
    char s[11010];
    int T;
    set <string> mp;
    int l;
    int n;
    set <string> :: iterator it;
    
    int judge(char ch){
    	if ((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') || (ch == '-') || (ch == '_')) return 1;
    	return 0;
    }
    
    
    int main(){
    
    	scanf("%d", &T);
    	while (T--){
    		mp.clear();
    		scanf("%d", &n);
    		getchar();
    
    		rep(op, 1, n){
    			gets(s);
    			l = strlen(s);
    
    			string s1 = "";
    			int i;
    			for (i = 0; i < l; ++i){
    				if (s[i] == '@'){
    					if (i && judge(s[i - 1])) continue;
    					s1 = "";
    					for (; i + 1 < l && judge(s[i + 1]); ){
    						s1 += s[i + 1];
    						++i;
    					}
    
    					if (s1 != "") mp.insert(s1);
    				}
    			}
    
    
    		}
    
    		printf("%d
    ", (int)mp.size());
    		for (it = mp.begin(); it != mp.end(); ++it) cout << *it << endl;
    	}
    
    
    	return 0;
    }
    

    Problem J

    签到。

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    #define MP		make_pair
    #define fi		first
    #define se		second
    
    
    typedef long long LL;
    
    int a[100010], b[100010];
    int n ;
    int T;
    
    
    int main(){
    
    	scanf("%d", &T);
    	while (T--){
    		scanf("%d", &n);
    		rep(i, 1, n) scanf("%d", a + i);
    		rep(i, 1, n) scanf("%d", b + i);
    
    		int ff = 1, fg = 1;
    
    		rep(i, 1, n) if (a[i] > b[i]) ff = 0;
    		rep(i, 1, n) if (a[i] > b[n - i + 1]) fg = 0;
    
    		if (ff && fg) puts("both");
    		else if (ff && !fg) puts("front");
    		else if (!ff && fg) puts("back");
    		else puts("none");
    	}
    
    
    	return 0;
    }
    

     

  • 相关阅读:
    node 读取文件
    jQuery全局事件处理函数
    可以发送不同源请求的方式
    ajax 高度封装的函数
    jQuery中AJAX的回调
    jQuery中对AJAX的封装
    ajax 基本的封装
    AJAX 返回数据问题
    ajax 关于响应类型
    动态渲染数据到表格中
  • 原文地址:https://www.cnblogs.com/cxhscst2/p/8646146.html
Copyright © 2020-2023  润新知