• 【算法设计与分析基础】10、深度优先遍历


    package cn.xf.algorithm.ch03;
    
    import org.junit.Test;
    
    /**
     * 深度优先遍历
     * @author xiaof
     *
     */
    public class DFS {
    
    	public void deepFirstSearch(int graph[][], char points[], int marks[]){
    		//吧所有点设置为0,表示还未访问过
    		for(int i = 0; i < marks.length; ++i) {
    			marks[i] = 0;
    		}
    		//遍历所有节点,挨个访问
    		for(int i = 0; i < points.length; ++i) {
    			//判断这个节点没有被访问过
    			if(marks[i] == 0) {
    //				System.out.println(" => " + key);
    				//表示当前节点已经被遍历
    				marks[i] = 1;
    				//深度遍历,这里是设置开始的节点
    				StringBuilder path = new StringBuilder(points[i] + "");
    				dfsw(graph, points, marks, i, path);
    				System.out.println(path.toString());
    			}
    		}
    	}
    	
    	//深度遍历
    	public void dfsw(int graph[][], char points[], int marks[], int curIndex, StringBuilder path){
    		//遍历其他节点,判断是否相连
    		for(int i = 0; i < marks.length; ++i) {
    			//遍历序列,并且获取对应的位置index
    			int curNum = graph[curIndex][i];
    			if(marks[i] == 0 && curNum != 0) {
    				//这个节点还没有被访问过,并且这个节点可达
    //				System.out.println(" => " + points[i]);
    				path.append(" => " + points[i]);
    				marks[i] = 1;
    				//递归到下一个
    				dfsw(graph, points, marks, i, path);
    			}
    		}
    	}
    
    	@Test
    	public void test1(){
    		
    		DFS dfs = new DFS();
    		//a,b,c,d,e,f,g,h,i,j一共10个节点,两颗树
    		//以下是矩阵图,0表示不相连,1表示相连,节点本身自己到自己为0
    		int graph[][] = {
    			//   a,b,c,d,e,f,g,h,i,j
    				{0,0,1,1,1,0,0,0,0,0},  //a 到其他节点
    				{0,0,0,0,1,1,0,0,0,0},	//b 到其他节点
    				{1,0,0,1,0,1,0,0,0,0},	//c 到其他节点
    				{1,0,1,0,0,0,0,0,0,0},	//d 到其他节点
    				{1,1,0,0,0,1,0,0,0,0},	//e 到其他节点
    				{0,1,1,0,1,0,0,0,0,0},	//f 到其他节点
    				{0,0,0,0,0,0,0,1,0,1},	//g 到其他节点
    				{0,0,0,0,0,0,1,0,1,0},	//h 到其他节点
    				{0,0,0,0,0,0,0,1,0,1},	//i 到其他节点
    				{0,0,0,0,0,0,1,0,1,0}	//j 到其他节点
    		};
    		char points[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};
    		int marks[] = {0,0,0,0,0,0,0,0,0,0};
    		dfs.deepFirstSearch(graph, points, marks);
    		
    		
    	}
    }
    

      

    结果:

  • 相关阅读:
    第三天-基本数据类型 int bool str
    第二天-while循环 格式化输出 运算符 编码
    第一天-python基础
    Mysql
    Mysql
    Mysql
    Mysql
    Mysql
    Mysql
    Php
  • 原文地址:https://www.cnblogs.com/cutter-point/p/6885593.html
Copyright © 2020-2023  润新知