• POJ 3233 Matrix Power Series


    Matrix Power Series
    Time Limit: 3000MS   Memory Limit: 131072K
    Total Submissions: 20210   Accepted: 8478

    Description

    Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

    Input

    The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

    Output

    Output the elements of S modulo m in the same way as A is given.

    Sample Input

    2 2 4
    0 1
    1 1

    Sample Output

    1 2
    2 3

    Source

    POJ Monthly--2007.06.03, Huang, Jinsong
     
    解法有多种。
    1.利用分块矩阵
      思路比较简单,建立下面分块矩阵,
      各个分块矩阵都是m*m的,I表示单位矩阵,O表示零矩阵,可以将它变化为幂次形式,即,
     
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <map>
     4 #include <vector>
     5 #include <functional>
     6 #include <string>
     7 #include <cstring>
     8 #include <queue>
     9 #include <set>
    10 #include <cmath>
    11 #include <cstdio>
    12 using namespace std;
    13 #define IOS ios_base::sync_with_stdio(false)]
    14 typedef long long LL;
    15 const int INF=0x3f3f3f3f;
    16 
    17 const int maxn=61;
    18 int modnum, n,k;
    19 typedef struct matrix{
    20     int v[maxn][maxn];
    21     void init(){memset(v,0,sizeof(v));}
    22 }M;
    23 M a,b,a2,d,r;
    24 M mul_mod(const M &a,const M &b,int L,int m,int n)
    25 {
    26     M c; c.init();
    27     for(int i=0;i<L;i++){
    28         for(int j=0;j<n;j++){
    29             for(int k=0;k<m;k++)//注意j,k范围
    30                 c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j]%modnum)%modnum;
    31         }
    32     }
    33     return c;
    34 }
    35 M power(M x,int L,int p)
    36 {
    37     M tmp; tmp.init();
    38     for(int i=0;i<L;i++)
    39         tmp.v[i][i]=1;
    40     while(p){
    41         if(p&1) tmp=mul_mod(x,tmp,L,L,L);
    42         x=mul_mod(x,x,L,L,L);
    43         p>>=1;
    44     }
    45     return tmp;
    46 }
    47 void init()
    48 {
    49     b.init();
    50     for(int i=0;i<n;i++)
    51         b.v[i][i]=b.v[i][i+n]=1;
    52     for(int i=n;i<2*n;i++)
    53         for(int j=n;j<2*n;j++)
    54             b.v[i][j]=d.v[i%n][j%n]=a.v[i%n][j%n];
    55     a2=power(a,n,2);
    56     for(int i=n;i<2*n;i++)
    57         for(int j=0;j<n;j++)
    58             d.v[i][j]=a2.v[i%n][j];
    59 }
    60 
    61 int main()
    62 {
    63     while(scanf("%d%d%d",&n,&k,&modnum)==3){
    64         for(int i=0;i<n;i++){
    65             for(int j=0;j<n;j++){
    66                 scanf("%d",&a.v[i][j]);
    67                 a.v[i][j]%=modnum;
    68             }
    69         }
    70         if(k==1){
    71             for(int i=0;i<n;i++){
    72                 for(int j=0;j<n;j++)
    73                     printf("%d ",a.v[i][j]);
    74                 printf("
    ");
    75             }
    76             continue;
    77         }
    78         init();
    79         r=power(b,2*n,k-1);
    80         r=mul_mod(r,d,2*n,2*n,n);
    81         for(int i=0;i<n;i++){
    82             for(int j=0;j<n;j++)
    83                 printf("%d ",r.v[i][j]);
    84             printf("
    ");
    85         }
    86     }
    87 }
    View Code
  • 相关阅读:
    去除 CSDN “官方免费去广告 + 万能工具”
    github 搜索技巧常用
    Python 使用 __doc__ 查看文档
    油猴脚本编写自己的脚本来去除知乎 "我们检测到你可能使用了 AdBlock 或 Adblock Plus"
    Unity 中的 C# Instantiate() 方法解析
    《流畅的 Python 》第 2 章笔记
    html 中 a 标签中 href 的路径相关问题
    VScode 复制代码到博客园编辑器自动带上代码标签问题
    Vue在Ubuntu上的部署
    在ubuntu上编译方式安装nginx
  • 原文地址:https://www.cnblogs.com/cumulonimbus/p/5695143.html
Copyright © 2020-2023  润新知