1定义编辑
2算法复杂度编辑
算法复杂度分为时间复杂度和空间复杂度。其作用: 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。
3时间复杂度编辑
计算方法
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出 T(n) 的同数量级(它的同数量级有以下:1,log(2)n,n,n log(2)n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n) = 该数量级,若 T(n)/f(n) 求极限可得到一常数c,则时间复杂度T(n) = O(f(n))
例:算法:
1
2
3
4
5
6
7
8
9
|
for (i=1;i<=n;++i) { for (j=1;j<=n;++j) { c[i][j]=0; //该步骤属于基本操作执行次数:n的平方次 for (k=1;k<=n;++k) c[i][j]+=a[i][k]*b[k][j]; //该步骤属于基本操作执行次数:n的三次方次 } } |
则有 T(n) = n 的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有 f(n) = n的三次方,然后根据 T(n)/f(n) 求极限可得到常数c
3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。
分类
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),对数阶O(log2n),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
关于对其的理解
《数据结构(C语言版)》------严蔚敏 吴伟民编著 第15页有句话"整个算法的执行时间与基本操作重复执行的次数成正比。"
基本操作重复执行的次数是问题规模n的某个函数f(n),于是算法的时间量度可以记为:T(n) = O(f(n))
如果按照这么推断,T(n)应该表示的是算法的时间量度,也就是算法执行的时间。
而该页对“语句频度”也有定义:指的是该语句重复执行的次数。
如果是基本操作所在语句重复执行的次数,那么就该是f(n)。
上边的n都表示的问题规模。
4空间复杂度编辑
一个程序的空间复杂度是指运行完一个程序所需内存的大小。利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。程序执行时所需存储空间包括以下两部分。
S(n)=O(f(n))
其中n为问题的规模,S(n)表示空间复杂度。
5性质编辑
一个算法所耗费的时间=算法中每条语句的执行时间之和
每条语句的执行时间=语句的执行次数(即频度(Frequency Count))×语句执行一次所需时间
算法转换为程序后,每条语句执行一次所需的时间取决于机器的指令性能、速度以及编译所产生的代码质量等难以确定的因素。
若要独立于机器的软、硬件系统来分析算法的时间耗费,则设每条语句执行一次所需的时间均是单位时间,一个算法的时间耗费就是该算法中所有语句的频度之和。