Let S = s1 s2 ... s2n be a well-formed string of parentheses. S can be encoded in two different ways:
- By an integer sequence P = p1 p2 ... pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
- By an integer sequence W = w1 w2 ... wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
思路:可以利用给出的P-sequence推导出括号序列,然后再算出W-sequence
W-sequence的定义有点晦涩,在次解释一下。
W-sequence:序列W = w1 w2 ... wn,wi含义:括号序列中第i个右括号和与其匹配的左括号之间有wi个右括号(包括第i个右括号自身)。
AC Code:
1 #include <iostream> 2 #include <algorithm> 3 #include <string> 4 #include <queue> 5 #include <vector> 6 #include <cmath> 7 #include <cstdio> 8 #include <cstring> 9 using namespace std; 10 11 int main() 12 { 13 vector<pair<char, bool> > par; 14 int t, n; 15 scanf("%d", &t); 16 while(t--) 17 { 18 par.clear(); 19 scanf("%d", &n); 20 int x, y, cnt = 0; 21 while(n--) 22 { 23 scanf("%d", &x); 24 y = x - cnt; 25 cnt = x; 26 while(y--) 27 par.push_back(make_pair('(', false)); 28 par.push_back(make_pair(')', false)); 29 } 30 vector<pair<char, bool> >::iterator i, j; 31 bool first = true; 32 for(i = par.begin(); i != par.end(); i++) 33 { 34 if(i->first == ')') 35 { 36 x = 0; 37 for(j = i; ; j--) 38 { 39 if(j->first == ')') 40 { 41 j->second = true; 42 x++; 43 } 44 else if(j->first == '(' && !j->second) 45 { 46 j->second = true; 47 break; 48 } 49 else if(j == par.end()) break; 50 } 51 if(!first) 52 printf(" %d", x); 53 else 54 { 55 printf("%d", x); 56 first = false; 57 } 58 } 59 } 60 putchar(' '); 61 } 62 return 0; 63 }