• Codeforces Round #191 (Div. 2) A. Flipping Game(简单)


    A. Flipping Game
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Iahub got bored, so he invented a game to be played on paper.

    He writes n integers a1, a2, ..., an. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices i and j (1 ≤ i ≤ j ≤ n) and flips all values ak for which their positions are in range [i, j] (that is i ≤ k ≤ j). Flip the value of x means to apply operation x = 1 - x.

    The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.

    Input

    The first line of the input contains an integer n (1 ≤ n ≤ 100). In the second line of the input there are n integers: a1, a2, ..., an. It is guaranteed that each of those n values is either 0 or 1.

    Output

    Print an integer — the maximal number of 1s that can be obtained after exactly one move.

    Sample test(s)
    Input
    5
    1 0 0 1 0
    Output
    4
    Input
    4
    1 0 0 1
    Output
    4
    Note

    In the first case, flip the segment from 2 to 5 (i = 2, j = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1].

    In the second case, flipping only the second and the third element (i = 2, j = 3) will turn all numbers into 1.

    思路:设数列为array,one[i]表示从array[1]到array[i](包括上下界)1的个数。故当对[i,j]范围内的数执行flip操作后,数列1的个数为:

    one[n] - (one[j] - one[i-1]) + (j - i + 1 - (one[j] - one[i-1]));

    式子中(one[j] - one[i-1])为[i,j]范围内1的个数,(j - i + 1 - (one[j] - one[i-1]))自然就是[i,j]中0的个数。

    AC Code:

     1 #include <iostream>
     2 #include <cstdio>
     3 
     4 using namespace std;
     5 
     6 const int maxn = 105;
     7 int one[maxn], n;
     8 
     9 int main()
    10 {
    11     while(scanf("%d", &n) != EOF)
    12     {
    13         int b;
    14         one[0] = 0;
    15         for(int i = 1; i <= n; i++)
    16         {
    17             one[i] = one[i-1];
    18             scanf("%d", &b);
    19             one[i] += b;
    20         }
    21         int cnt = -1;
    22         for(int i = 1; i <= n; i++)
    23         {
    24             for(int j = i; j <= n; j++)
    25             {
    26                 int tmp = one[n] - (one[j] - one[i-1]) + (j - i + 1 - (one[j] - one[i-1]));
    27                 if(cnt < tmp) cnt = tmp;
    28             }
    29         }
    30         printf("%d
    ", cnt);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    深入理解决策树算法
    【机器学习】一文读懂分类算法常用评价指标
    Git常用操作指南
    深度学习工作站攒机指南
    一文看懂Transformer内部原理(含PyTorch实现)
    【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练
    机器学习数学基础总结
    平均精度均值(mAP)——目标检测模型性能统计量
    【Java面试宝典】深入理解JAVA虚拟机
    Faster R-CNN:详解目标检测的实现过程
  • 原文地址:https://www.cnblogs.com/cszlg/p/3189862.html
Copyright © 2020-2023  润新知