Recaman's Sequence
Time Limit: 3000MS
Memory Limit: 60000K
Total Submissions: 19147
Accepted: 8028
Description
The Recaman's sequence is defined by a0 = 0 ; for m > 0, am = am−1 − m if the rsulting am is positive and not already in the sequence, otherwise am = am−1 + m.
The first few numbers in the Recaman's Sequence is 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9 ...
Given k, your task is to calculate ak.
Input
The input consists of several test cases. Each line of the input contains an integer k where 0 <= k <= 500000.
The last line contains an integer −1, which should not be processed.
Output
For each k given in the input, print one line containing ak to the output.
Sample Input
7 10000 -1
Sample Output
20 18658
Source
先预处理求出k<=500000的所有的ak,然后对于输入的k直接输出ak即可。
以下代码中使用STL map标记数字是否在序列中出现,用数组标记效率会更高,怎么知道数组要开多大?我的做法比较笨,就是先用map标记然后求出a[0:500000]中最大的ak。
1: #include <iostream>
2: #include <cstdio>
3: #include <map>
4: using namespace std;
5:
6: int a[500005] = {0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9};
7: int k;
8: map<int, bool> M;
9:
10: int main()
11: {
12: for(int i = 0; i < 15; i++) M[a[i]] = true;
13: for(int i = 15; i < 500001; i++)
14: {
15: a[i] = a[i-1] - i;
16: if(a[i] <= 0 || M[a[i]])
17: a[i] = a[i-1] + i;
18: M[a[i]] = true;
19: }
20: while(scanf("%d", &k) && k != -1)
21: printf("%d\n", a[k]);
22: return 0;
23: }