• 布隆过滤器(Bloom Filter)简要介绍


    一种节省空间概率数据结构

    布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。

    当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能根本就没见过面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见过你。

    Redis 官方提供的布隆过滤器到了 Redis 4.0 提供了插件功能之后才正式登场。布隆过滤器作为一个插件加载到 Redis Server 中,给 Redis 提供了强大的布隆去重功能。

    布隆过滤器有二个基本指令,bf.add 添加元素,bf.exists 查询元素是否存在,它的用法和 set 集合的 sadd 和 sismember 差不多。注意 bf.add 只能一次添加一个元素,如果想要一次添加多个,就需要用到 bf.madd 指令。同样如果需要一次查询多个元素是否存在,就需要用到 bf.mexists 指令。

    优点占用空间小,查询快

    缺点有误判,删除困难

    布隆过滤器是一个神奇的数据结构,可以用来判断一个元素是否在一个集合中。很常用的一个功能是用来去重。在爬虫中常见的一个需求:目标网站 URL 千千万,怎么判断某个 URL 爬虫是否宠幸过?简单点可以爬虫每采集过一个 URL,就把这个 URL 存入数据库中,每次一个新的 URL 过来就到数据库查询下是否访问过。

    但是随着爬虫爬过的 URL 越来越多,每次请求前都要访问数据库一次,并且对于这种字符串的 SQL 查询效率并不高。除了数据库之外,使用 Redis 的 set 结构也可以满足这个需求,并且性能优于数据库。但是 Redis 也存在一个问题:耗费过多的内存。这个时候布隆过滤器就很横的出场了:这个问题让我来。

    相比于数据库和 Redis,使用布隆过滤器可以很好的避免性能和内存占用的问题。

    布隆过滤器本质是一个位数组,位数组就是数组的每个元素都只占用 1 bit每个元素只能是 0 或者 1。这样申请一个 10000 个元素的位数组只占用 10000 / 8 = 1250 B 的空间。布隆过滤器除了一个位数组,还有 K 个哈希函数

    当一个元素加入布隆过滤器中的时候,会进行如下操作:

    使用 K 个哈希函数对元素值进行 K 次计算,得到 K 个哈希值。

    根据得到的哈希值,在位数组中把对应下标的值置为 1。

    假设布隆过滤器有 3 个哈希函数:f1, f2, f3 和一个位数组 arr。现在要把 https://jaychen.cc 插入布隆过滤器中:

    对值进行三次哈希计算,得到三个值 n1, n2, n3。

    把位数组中三个元素 arr[n1], arr[n2], arr[3] 置为 1。

    当要判断一个值是否在布隆过滤器中,对元素再次进行哈希计算,得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。

    看了上面的说明,必然会提出一个问题:当插入的元素原来越多,位数组中被置为 1 的位置就越多,当一个不在布隆过滤器中的元素,经过哈希计算之后,得到的值在位数组中查询,有可能这些位置也都被置为 1。这样一个不存在布隆过滤器中的也有可能被误判成在布隆过滤器中。但是如果布隆过滤器判断说一个元素不在布隆过滤器中,那么这个值就一定不在布隆过滤器中。简单来说:

    布隆过滤器说某个元素在,可能会被误判

    布隆过滤器说某个元素不在,那么一定不在

    这个布隆过滤器的缺陷放到上面爬虫的需求中,可能存在某些没有访问过的 URL 可能会被误判为访问过,但是如果是访问过的 URL 一定不会被误判为没访问过。

    Redis 中的布隆过滤器

    redis 在 4.0 的版本中加入了 module 功能,布隆过滤器可以通过 module 的形式添加到 redis 中,所以使用 redis 4.0 以上的版本可以通过加载 module 来使用 redis 中的布隆过滤器。但是这不是最简单的方式,使用 docker 可以直接在 redis 中体验布隆过滤器。

    redis 布隆过滤器主要就两个命令

    bf.add 添加元素到布隆过滤器中:bf.add urls https://jaychen.cc。

    bf.exists 判断某个元素是否在过滤器中:bf.exists urls https://jaychen.cc

     

    上面说过布隆过滤器存在误判的情况,在 redis 中有两个值决定布隆过滤器的准确率

    error_rate:允许布隆过滤器的错误率,这个值越低过滤器的位数组的大小越大占用空间也就越大

    initial_size:布隆过滤器可以储存的元素个数,当实际存储的元素个数超过这个值之后,过滤器的准确率会下降

     

    redis 中有一个命令可以来设置这两个值:

    bf.reserve urls 0.01 100

    三个参数的含义:

    第一个值是过滤器的名字

    第二个值为 error_rate 的值。

    第三个值为 initial_size 的值。

    使用这个命令要注意一点:执行这个命令之前过滤器的名字应该不存在,如果执行之前就存在会报错:(error) ERR item exists

  • 相关阅读:
    [20180808]exists and not exists.txt
    [20180806]tune2fs调整保留块百分比.txt
    [20180730]exadata与行链接.txt
    [20180801]insert导致死锁.txt
    [20180718]拷贝数据文件从dg库.txt
    [20180713]关于hash join 测试中一个疑问.txt
    [20180705]关于hash join 2.txt
    virtualbox 中ubantu虚拟机范文win7文件夹
    myeclipse10安装findbugs
    win7共享文件夹给局域网
  • 原文地址:https://www.cnblogs.com/csuliujia/p/10156332.html
Copyright © 2020-2023  润新知