• poj3070 矩阵快速幂


     
     
    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 13438   Accepted: 9562

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    第一次写快速矩阵幂,按着Hint讲解的就好, 联想着快速幂,都有一个幂n,底数a,取余mod,还有一个ans = 1,作为初始;这里用

    代替ans = 1, [1,1 ]作为底数a。。大概如此。。

                        [ 1,0]

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cstring>
     4 const int mod = 10000;
     5 using namespace std;
     6 struct mat {
     7     int a[3][3];
     8     mat() {
     9         memset(a, 0, sizeof(a));
    10     }
    11     mat operator *(const mat &o) const {
    12         mat t;
    13         for(int i = 1; i <= 2; i++) {
    14             for(int j = 1; j <= 2; j++)
    15                 for(int k = 1; k <= 2; k++) {
    16                     t.a[i][j] = (t.a[i][j] + a[i][k]*o.a[k][j])%mod;
    17                 }
    18         }
    19         return t;
    20     }
    21 } a, b;
    22 
    23 int main() {
    24     int n;
    25     while(scanf("%d", &n) !=EOF && n!= -1) {
    26         a.a[1][1] = a.a[2][2] = 1, a.a[1][2] = a.a[2][1] = 0;
    27         b.a[1][1] = b.a[1][2] = b.a[2][1] = 1, b.a[2][2] = 0;
    28         if(n == 0) printf("0
    ");
    29         else {
    30             n--;
    31             while(n > 0) {
    32                 if(n&1) {
    33                     a = b*a;
    34                     n--;
    35                 }
    36                 n >>= 1;
    37                 b = b*b;
    38             }
    39             printf("%d
    ", a.a[1][1]);
    40         }
    41     }
    42     return 0;
    43 }

     

     

     

  • 相关阅读:
    诡异的Integer
    你已经创建了多少个对象?
    静态方法中使用非静态化数据
    静态化初始块的执行顺序
    java中的多构造函数以及类字段的初始化顺序
    java中类的构造方法出错点
    程序员修炼之道读后感
    纯随机数发生器,以及函数重载的问题
    递归判断回文
    使用jQuery操作DOM元素
  • 原文地址:https://www.cnblogs.com/cshg/p/5916039.html
Copyright © 2020-2023  润新知