• UVALive 3211 Now or later


    Now or later

    Time Limit: 9000ms
    Memory Limit: 131072KB
    This problem will be judged on UVALive. Original ID: 3211
    64-bit integer IO format: %lld      Java class name: Main
     

    As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holding loop close to the runway. This holding mechanism is required by air traffic controllers to space apart aircraft as much as possible on the runway (while keeping delays low). It is formally defined as a ``holding pattern'' and is a predetermined maneuver designed to keep an aircraft within a specified airspace (see Figure 1 for an example).

    Figure 1: A simple Holding Pattern as described in a pilot text book.
     
    epsfbox{p3211.eps}

    Jim Tarjan, an air-traffic controller, has asked his brother Robert to help him to improve the behavior of the airport.

     

    Input

    The Terminal Radar Approach CONtrol (TRACON) controls aircraft approaching and departing when they are between 5 and 50 miles of the airport. In this final scheduling process, air traffic controllers make some aircraft wait before landing. Unfortunately this ``waiting'' process is complex as aircraft follow predetermined routes and their speed cannot be changed. To reach some degree of flexibility in the process, the basic delaying procedure is to make aircraft follow a holding pattern that has been designed for the TRACON area. Such patterns generate a constant prescribed delay for an aircraft (see Figure 1 for an example). Several holding patterns may exist in the same TRACON.

    In the following, we assume that there is a single runway and that when an aircraft enters the TRACON area, it is assigned an early landing time, a late landing time and a possible holding pattern. The early landing time corresponds to the situation where the aircraft does not wait and lands as soon as possible. The late landing time corresponds to the situation where the aircraft waits in the prescribed holding pattern and then lands at that time. We assume that an aircraft enters at most one holding pattern. Hence, the early and late landing times are the only two possible times for the landing.

    The security gap is the minimal elapsed time between consecutive landings. The objective is to maximize the security gap. Robert believes that you can help.

     

    Output

    Assume there are 10 aircraft in the TRACON area. Table 1 provides the corresponding early and late landing times (columns ``Early'' and ``Late'').

    Table 1: A 10 aircraft instance of the problem.
     
    Aircraft Early Late Solution
    A1 44 156 Early
    A2 153 182 Early
    A3 48 109 Late
    A4 160 201 Late
    A5 55 186 Late
    A6 54 207 Early
    A7 55 165 Late
    A8 17 58 Early
    A9 132 160 Early
    A10 87 197 Early


    The maximal security gap is 10 and the corresponding solution is reported in Table 1 (column ``Solution''). In this solution, the aircraft land in the following order: A8, A1, A6, A10, A3,A9, A2, A7, A5, A4. The security gap is realized by aircraft A1 and A6.

     

    Sample Input

     
    10
    44 156
    153 182
    48 109
    160 201
    55 186
    54 207
    55 165
    17 58
    132 160
    87 197
    

    Sample Output

     
    10
    

    Source

     
    解题i:二分+2sat
     
      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 const int maxn = 5010;
      4 struct arc {
      5     int to,next;
      6     arc(int x = 0,int y = -1) {
      7         to = x;
      8         next = y;
      9     }
     10 };
     11 arc e[maxn*maxn];
     12 int head[maxn],dfn[maxn],low[maxn],belong[maxn];
     13 int tot,cnt,scc,n,m;
     14 bool instack[maxn];
     15 stack<int>stk;
     16 void add(int u,int v) {
     17     e[tot] = arc(v,head[u]);
     18     head[u] = tot++;
     19 }
     20 void init() {
     21     for(int i = 0; i < maxn; i++) {
     22         belong[i] = 0;
     23         low[i] = dfn[i] = 0;
     24         head[i] = -1;
     25         instack[i] = false;
     26     }
     27     while(!stk.empty()) stk.pop();
     28     tot = cnt = scc = 0;
     29 }
     30 void tarjan(int u) {
     31     dfn[u] = low[u] = ++cnt;
     32     instack[u] = true;
     33     stk.push(u);
     34     for(int i = head[u]; ~i; i = e[i].next) {
     35         if(!dfn[e[i].to]) {
     36             tarjan(e[i].to);
     37             if(low[e[i].to] < low[u]) low[u] = low[e[i].to];
     38         } else if(instack[e[i].to] && dfn[e[i].to] < low[u])
     39             low[u] = dfn[e[i].to];
     40     }
     41     if(dfn[u] == low[u]) {
     42         scc++;
     43         int v;
     44         do {
     45             v = stk.top();
     46             stk.pop();
     47             instack[v] = false;
     48             belong[v] = scc;
     49         } while(v != u);
     50     }
     51 }
     52 bool solve() {
     53     for(int i = 0; i < (n<<1); i++)
     54         if(!dfn[i]) tarjan(i);
     55     for(int i = 0; i < n; i++)
     56         if(belong[i] == belong[i+n]) return false;
     57     return true;
     58 }
     59 int tim[maxn][2];
     60 bool check(int t) {
     61     init();
     62     for(int i = 0; i < n; ++i)
     63         for(int j = i+1; j < n; ++j) {
     64             if(abs(tim[i][0] - tim[j][0]) < t) {
     65                 add(i,j+n);
     66                 add(j,i+n);
     67             }
     68             if(abs(tim[i][0] - tim[j][1]) < t) {
     69                 add(i,j);
     70                 add(j+n,i+n);
     71             }
     72             if(abs(tim[i][1] - tim[j][0]) < t) {
     73                 add(i+n,j+n);
     74                 add(j,i);
     75             }
     76             if(abs(tim[i][1] - tim[j][1]) < t) {
     77                 add(i+n,j);
     78                 add(j+n,i);
     79             }
     80         }
     81     for(int i = 0; i < 2*n; ++i)
     82         if(!dfn[i]) tarjan(i);
     83     for(int i = 0; i < n; ++i)
     84         if(belong[i] == belong[i+n]) return false;
     85     return true;
     86 }
     87 int main() {
     88     while(~scanf("%d",&n)) {
     89         int low = 0,high = 0;
     90         for(int i = 0; i < n; ++i) {
     91             for(int j = 0; j < 2; ++j) {
     92                 scanf("%d",tim[i]+j);
     93                 high = max(high,tim[i][j]);
     94             }
     95         }
     96         int ret = -1;
     97         while(low <= high) {
     98             int mid = (low + high)>>1;
     99             if(check(mid)) {
    100                 ret = mid;
    101                 low = mid+1;
    102             } else high = mid-1;
    103         }
    104         printf("%d
    ",ret);
    105     }
    106     return 0;
    107 }
    View Code
  • 相关阅读:
    鼠标跟随效果 vue或者js通用
    element 多个文件上传多次http请求解决方法
    快速判断数组中值是否重复
    vue-resource+element upload上传(遇到formData总是变为object格式)
    element UI 下拉菜单滚动监听(vue指令)
    echarts环形图自动定位radius
    echarts地图散点高亮弹框制作
    js实现table表格相同内容按需合并
    element ui表格相同内容自动合并
    hadoop yarn
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4693187.html
Copyright © 2020-2023  润新知