• LeetCode之位操作题java


    191. Number of 1 Bits

    Total Accepted: 87985 Total Submissions: 234407 Difficulty: Easy

    Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also known as the Hamming weight).

    For example, the 32-bit integer ’11' has binary representation 00000000000000000000000000001011, so the function should return 3.

    public class Solution {
        // you need to treat n as an unsigned value

      //使用按位与操作
    public int hammingWeight(int n) { int count = 0; while(n!=0){ n = n&(n-1); ++count; } return count; } }

    190. Reverse Bits

    Total Accepted: 60957 Total Submissions: 208165 Difficulty: Easy

    Reverse bits of a given 32 bits unsigned integer.

    For example, given input 43261596 (represented in binary as 00000010100101000001111010011100), return 964176192 (represented in binary as 00111001011110000010100101000000).

    public class Solution {
        // you need treat n as an unsigned value

      //结果往右移,而n值往左移动,以此来匹配
    public int reverseBits(int n) { if(n==0) return 0; int result = 0; for(int i=0;i<32;i++){ result <<= 1; if((n&1)==1) result++; n >>= 1; } return result; } }

    338. Counting Bits

    Total Accepted: 17636 Total Submissions: 31865 Difficulty: Medium

    Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

    Example:
    For num = 5 you should return [0,1,1,2,1,2].

    Follow up:

      • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
      • Space complexity should be O(n).
      • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

     使用动态规划的思想;

    public class Solution {
        public int[] countBits(int num) {
            int[] arr = new int[num+1];
            arr[0] = 0;
            for(int i=1;i<=num;i++){
                arr[i] = arr[i&(i-1)]+1;///数i中1的位数,与前面的i&(i-1)中1的位数有关,为i&(i-1)中1的位数+1;
            }
            return arr;
        }
    }

    371. Sum of Two Integers

     

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -.

    Example:
    Given a = 1 and b = 2, return 3

    不使用加减法对两数进行相加:

    解题思路:使用位操作,异或(^)操作(进行不进位的加法),位与(&)操作进行标记待进位的位置,如a=5=0101,b=7=0111,不进位的加法的结果为a^b=0010,待进位的位置是a&b=0101,初次进位0101<<1=1010,与a^b进行相加又产生进位....如此循环,直到进位为0

    public class Solution {
        public int getSum(int a, int b) {
            int sum = 0;
            int carry = 0;
            do{
                sum = a^b;//相加不进位
                carry = (a&b)<<1;//进位
                a = sum;
                b = carry;
            }while(b!=0);
            
            return a;
        }
    }

    201. Bitwise AND of Numbers Range

    Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive.

    For example, given the range [5, 7], you should return 4.

     思路:使用n&(n-1),将n最右边的第一个位数为1的经过该操作后变为0,可减少很多运算;

      1)当n&(n-1)=0时,直接返回n=0;

      2)当n&(n-1)=m时,直接返回m;

      3)其他情况,n&(n-1)<m且不为0,最终的结果就是n&(n-1);

    public class Solution {
        public int rangeBitwiseAnd(int m, int n) {
            while(n>m){
                n = n&(n-1);
            }
            return n;
        }
    }
    public class Solution {
        public int rangeBitwiseAnd(int m, int n) {
            int step = 0;
            while(m!=n){
                m >>= 1;
                n >>= 1;
                step ++;
            }
            return m<<step;
        }
    }
  • 相关阅读:
    [leetcode] 18. 四数之和
    [leetcode] 17. 电话号码的字母组合
    [leetcode] 16. 最接近的三数之和
    [leetcode] 15. 三数之和
    [leetcode] 14. 最长公共前缀
    [leetcode] 13. 罗马数字转整数
    [leetcode] 12. 整数转罗马数字
    [leetcode] 11.盛最多水的容器
    分布式系统中的缓存——笔记整理
    图解HTTP
  • 原文地址:https://www.cnblogs.com/coffy/p/5435378.html
Copyright © 2020-2023  润新知