• [LeetCode]面试题14- I. 剪绳子(DP/贪心)


    题目

    给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m] 。请问 k[0]k[1]...*k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

    示例 1:

    输入: 2
    输出: 1
    解释: 2 = 1 + 1, 1 × 1 = 1
    示例 2:

    输入: 10
    输出: 36
    解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
    提示:

    2 <= n <= 58

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    题解

    方法一(常规思路):DP
    dp[i] 表示长度为i的绳子得到的最大乘积(2、3特例
    dp[i] = dp[j] * dp[i - j] , j<=i/2

    方法二:贪心
    参考 https://leetcode-cn.com/problems/integer-break/solution/343-zheng-shu-chai-fen-tan-xin-by-jyd/
    通过枚举前面几个值,发现因子是有优先级的,应拆解出更多的因子3。此外特别的,若这个数除以3余1,则应将拿出一个3,将3+1=>2+2的形式,最终乘积最大。
    时间复杂度及空间复杂度均为O(1).

    代码

    方法一:DP

    class Solution {
        public int cuttingRope(int n) {
            if(n == 2){
                return 1;
            }
            if(n == 3){
                return 2;
            }
    
            int[] dp = new int[n + 1]; 
            dp[1] = 1;
            dp[2] = 2;
            dp[3] = 3;
            for(int i = 4; i <= n; ++i){
                for(int j = 0; j <= i/2; ++j){
                     dp[i] = Math.max(dp[i], dp[j]*dp[i - j]);
                }
            }
            return dp[n];
        }
    }
    

    方法二:贪心

    class Solution {
        public int cuttingRope(int n) {
            if (n == 2) {
                return 1;
            } else if (n == 3) {  
                return 2;
            }
            int k = n / 3;
            int b = n % 3;
            if( b == 1){
                return (int)Math.pow(3, k - 1) * 4;
            } else if(b == 2){
                return (int)Math.pow(3, k) * 2;
            } else {
                return (int)Math.pow(3, k);
            }
        }
    }
    
  • 相关阅读:
    Linux系统主流架构一
    CentOS7.2部署KVM虚拟机
    MySQL
    MQ消息队列
    LVM
    Docker管理工具-Swarm部署记录
    Linux下DNS简单部署(主从域名服务器)
    kvm虚拟机命令梳理
    批量创建10个系统帐号tianda01-tianda10并设置密码
    随笔分类
  • 原文地址:https://www.cnblogs.com/coding-gaga/p/12369172.html
Copyright © 2020-2023  润新知