• JDK容器类Map源码解读


    java.util.Map接口是JDK1.2开始提供的一个基于键值对的散列表接口,其设计的初衷是为了替换JDK1.0中的java.util.Dictionary抽象类。Dictionary是JDK最初的键值对类,它不可以存储null作为key和value,目前这个类早已不被使用了。目前都是在使用Map接口,它是可以存储null值作为key和value,但Map的key是不可以重复的。其常用的实现类主要有HashMap,TreeMap,ConcurrentHashMap等

    HashMap源码解读

    目前JDK已经发布到JDK12,主流的JDK版本是JDK8, 但是如果阅读HashMap的源码建议先看JDK7的源码。JDK7和JDK8的源码中HashMap的实现原理大体相同,只不过是在JDK8中做了部分优化。但是JDK8的源码可读性非常差。

    HashMap 是一个存储键值对(key-value)映射的散列表,继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口,HashMap是线程不安全的,它存储的映射也是无序的。

    HashMap的底层主要是基于数组和链表来实现的(JDK8之后又引入了红黑树),数据存储时会通过对key进行哈希操作取到哈希值,然后将哈希值对数组长度取模,得到的值就是该键值对在数组中的索引index值,如果数组该位置没有值则直接将该键值对放在该位置,如果该位置已经有值则将其插入相应链表的位置,JDK8开始为优化链表长度过长导致的性能问题从而引入了红黑树,当链表的长度大于8时会自动将链表转成红黑树。

    JDK7中HashMap的源码解读

    JDK7中HashMap采用Entry数组来存储键值对,每一个键值对组成了一个Entry实体,Entry类实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Entry实体组成链表。

    img

    JDK7中HashMap源码中的主要字段

    // 数组默认的大小
    // 1 << 4,表示1,左移4位,变成10000,即16,以二进制形式运行,效率更高
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    
    // 数组最大值
    static final int MAXIMUM_CAPACITY = 1 << 30; 
    
    // 默认的负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    // 真正存放数据的数组
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
    

    HashMap中默认的数组容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。因此通常建议能提前预估 HashMap 的大小最好,尽量的减少扩容带来的性能损耗。

    JDK7中HashMap源码中的构造器

    
        /**  默认的初始化容量、默认的加载因子
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {    //16  0.75
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**   做了两件事:1、为threshold、loadFactor赋值   2、调用init()
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)     //限制最大容量
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))     //检查 loadFactor
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            //真正在做的,只是记录下loadFactor、initialCpacity的值
            this.loadFactor = loadFactor;       //记录下loadFactor
            threshold = initialCapacity;        //初始的 阈值threshold=initialCapacity=16
            init();
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                          DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
            inflateTable(threshold);
    
            putAllForCreate(m);
        }
    

    JDK7中HashMap源码中的put方法

    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            if (table == EMPTY_TABLE) {
                inflateTable(threshold);    //初始化表 (初始化、扩容 合并为了一个方法)
            }
            if (key == null)        //对key为null做特殊处理
                return putForNullKey(value);
            int hash = hash(key);           //计算hash值
            int i = indexFor(hash, table.length);   //根据hash值计算出index下标
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {  //遍历下标为i处的链表
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  //如果key值相同,覆盖旧值,返回新值
                    V oldValue = e.value;
                    e.value = value;    //新值 覆盖 旧值
                    e.recordAccess(this);   //do nothing
                    return oldValue;    //返回旧值
                }
            }
    
            modCount++;         //修改次数+1,类似于一个version number
            addEntry(hash, key, value, i);
            return null;
        }
    
    
        /**
         * Adds a new entry with the specified key, value and hash code to
         * the specified bucket.  It is the responsibility of this
         * method to resize the table if appropriate.
         *
         * Subclass overrides this to alter the behavior of put method.
         */
        void addEntry(int hash, K key, V value, int bucketIndex) {
            if ((size >= threshold) && (null != table[bucketIndex])) {  //如果size大于threshold && table在下标为index的地方已经有entry了
                resize(2 * table.length);       //扩容,将数组长度变为原来两倍
                hash = (null != key) ? hash(key) : 0;       //重新计算 hash 值
                bucketIndex = indexFor(hash, table.length); //重新计算下标
            }
    
            createEntry(hash, key, value, bucketIndex);     //创建entry
        }
    
        /**
         * Rehashes the contents of this map into a new array with a
         * larger capacity.  This method is called automatically when the
         * number of keys in this map reaches its threshold.
         *
         * If current capacity is MAXIMUM_CAPACITY, this method does not
         * resize the map, but sets threshold to Integer.MAX_VALUE.
         * This has the effect of preventing future calls.
         *
         * @param newCapacity the new capacity, MUST be a power of two;
         *        must be greater than current capacity unless current
         *        capacity is MAXIMUM_CAPACITY (in which case value
         *        is irrelevant).
         */
        void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity == MAXIMUM_CAPACITY) {  //状态检查
                threshold = Integer.MAX_VALUE;
                return;
            }
    
            Entry[] newTable = new Entry[newCapacity];      //实例化新的table
            transfer(newTable, initHashSeedAsNeeded(newCapacity));  //赋值数组元素到新的数组
            table = newTable;
            threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
        }
    
        /**
         * Transfers all entries from current table to newTable.
         */
        void transfer(Entry[] newTable, boolean rehash) {
            int newCapacity = newTable.length;
            for (Entry<K,V> e : table) {
                while(null != e) {
                    Entry<K,V> next = e.next;
                    if (rehash) {
                        e.hash = null == e.key ? 0 : hash(e.key);       //对key进行hash
                    }
                    int i = indexFor(e.hash, newCapacity);      //用新的index来取模
                    e.next = newTable[i];
                    newTable[i] = e;            //把元素存入新table新的新的index处
                    e = next;
                }
            }
        }
    
        /**
         * Like addEntry except that this version is used when creating entries
         * as part of Map construction or "pseudo-construction" (cloning,
         * deserialization).  This version needn't worry about resizing the table.
         *
         * Subclass overrides this to alter the behavior of HashMap(Map),
         * clone, and readObject.
         */
        void createEntry(int hash, K key, V value, int bucketIndex) {
            Entry<K,V> e = table[bucketIndex];      //获取table中存的entry
            table[bucketIndex] = new Entry<>(hash, key, value, e);   //将新的entry放到数组中,next指向旧的table[i]
            size++;         //修改map中元素个数
        }
    

    JDK7中HashMap源码中的put方法

    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            if (key == null)
                return getForNullKey();
            Entry<K,V> entry = getEntry(key);
    
            return null == entry ? null : entry.getValue();
        }
    
    
        /**
         * Returns the entry associated with the specified key in the
         * HashMap.  Returns null if the HashMap contains no mapping
         * for the key.
         */
        final Entry<K,V> getEntry(Object key) {
            if (size == 0) {
                return null;
            }
    
            int hash = (key == null) ? 0 : hash(key);
            for (Entry<K,V> e = table[indexFor(hash, table.length)];
                 e != null;
                 e = e.next) {
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            }
            return null;
        }
    

    JDK8中HashMap的源码解读

    JDK8中HashMap采用Node数组来存储键值对,Node其实就是JDK7中的Entry,只不过是换了一个名字,同样每一个键值对组成了一个Node实体,然后组成链表。当 Hash 冲突严重时,链表会变的越来越长,这样在查询时的效率就会越来越低,JDK8所做的优化就是,当链表的长度达到8的时候会转变成红黑树TreeNode。

    img

    JDK8中HashMap源码中的主要字段

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    // 用于判断是否需要将链表转换为红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;
    
    // 用于判断是否需要将红黑树转换为链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    
    static final int MIN_TREEIFY_CAPACITY = 64;
    
    // 存放数据的数组
    transient Node<K,V>[] table;
    

    JDK8中HashMap源码中的构造器

        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    

    JDK8中HashMap源码中的put方法

    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods.  添加元素
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)     //若table为null
                n = (tab = resize()).length;                        //resize
            if ((p = tab[i = (n - 1) & hash]) == null)              //计算下标i,取出i处的元素为p,如果p为null
                tab[i] = newNode(hash, key, value, null);       //创建新的node,放到数组中
            else {                  //若 p!=null
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))     //若key相同
                    e = p;      //直接覆盖
                else if (p instanceof TreeNode)     //如果为 树节点
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);     //放到树中
                else {                                          //如果key不相同,也不是treeNode
                    for (int binCount = 0; ; ++binCount) {      //遍历i处的链表
                        if ((e = p.next) == null) {             //找到尾部
                            p.next = newNode(hash, key, value, null);       //在末尾添加一个node
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st    //如果链表长度  >= 8
                                treeifyBin(tab, hash);             //将链表转成共黑树
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))     //若果key相同,直接退出循环
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    
        /**
         * Replaces all linked nodes in bin at index for given hash unless
         * table is too small, in which case resizes instead.
         */
        final void treeifyBin(Node<K,V>[] tab, int hash) {
            int n, index; Node<K,V> e;
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize();
            else if ((e = tab[index = (n - 1) & hash]) != null) {
                TreeNode<K,V> hd = null, tl = null;
                do {
                    TreeNode<K,V> p = replacementTreeNode(e, null);
                    if (tl == null)
                        hd = p;
                    else {
                        p.prev = tl;
                        tl.next = p;
                    }
                    tl = p;
                } while ((e = e.next) != null);
                if ((tab[index] = hd) != null)
                    hd.treeify(tab);
            }
        }
    
       /**
         * Initializes or doubles table size.  If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         *
         * @return the table
         */
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;  // 如果 旧数组为null就讲旧的容量看做是0,否则用旧的table长度当做容量
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];     //创建新的数组
            table = newTab;                                         //赋值给table
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    

    JDK8中HashMap源码中的get方法

    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.get and related methods.
         *
         * @param hash hash for key
         * @param key the key
         * @return the node, or null if none
         */
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    

    ConcurrentHashMap源码解读

    ConcurrentHashMap是一个线程安全的HashMap实现,ConcurrentHashMap在JDK7和JDK8中的实现差别比较大,JDK7中ConcurrentHashMap是使用Segment数组来存放数据,一个Segment就相当于一个HashMap的数据结构,每个Segment使用一个锁。JDK8之后Segment虽保留,但仅是为了兼容旧版本,已经不再使用,JDK8中ConcurrentHashMap使用和HashMap一样的数据结构Node数组来存储数据,每个数组位置使用一个锁。

    JDK7中的ConcurrentHashMap源码解读

    JDK7中ConcurrentHashMap的底层Segment组,而Segment其实就是特殊的HashMap,Segment的数据结构跟HashMap一样,同时它继承了ReentrantLock,通过ReentrantLock提供的锁实现了线程的安全。ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,每个Segment就是一段,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现并发访问,Segment数组的长度就是ConcurrentHashMap的线程并行级别,Segment数组默认的长度为16,也就是说最多同时可以有16个线程去访问ConcurrentHashMap。segment 数组不能扩容,而是对 segment 数组某个位置的segmen内部的数组HashEntry[] 进行扩容,扩容后容量为原来的 2 倍,该方法没有考虑并发,因为执行该方法之前已经获取了锁。

    img

    JDK7中的ConcurrentHashMap源码中的主要字段

    // 数组默认大小
    static final int DEFAULT_INITIAL_CAPACITY = 16;
    
    // 默认的负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    // 默认线程并发度
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    
    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
    
    static final int MAX_SEGMENTS = 1 << 16;
    
    // 数组最大大小
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    static final int RETRIES_BEFORE_LOCK = 2;
    

    JDK7中的ConcurrentHashMap源码中的构造器

        /**
         * Creates a new, empty map with a default initial capacity (16),
         * load factor (0.75) and concurrencyLevel (16).
         */
        public ConcurrentHashMap() {
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        }
    
        /**
         * Creates a new, empty map with the specified initial capacity,
         * and with default load factor (0.75) and concurrencyLevel (16).
         *
         * @param initialCapacity the initial capacity. The implementation
         * performs internal sizing to accommodate this many elements.
         * @throws IllegalArgumentException if the initial capacity of
         * elements is negative.
         */
        public ConcurrentHashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        }
    
        /**
         * Creates a new, empty map with the specified initial capacity
         * and load factor and with the default concurrencyLevel (16).
         *
         * @param initialCapacity The implementation performs internal
         * sizing to accommodate this many elements.
         * @param loadFactor  the load factor threshold, used to control resizing.
         * Resizing may be performed when the average number of elements per
         * bin exceeds this threshold.
         * @throws IllegalArgumentException if the initial capacity of
         * elements is negative or the load factor is nonpositive
         *
         * @since 1.6
         */
        public ConcurrentHashMap(int initialCapacity, float loadFactor) {
            this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
        }
    
        /**
         * Creates a new, empty map with the specified initial
         * capacity, load factor and concurrency level.
         *
         * @param initialCapacity the initial capacity. The implementation
         * performs internal sizing to accommodate this many elements.
         * @param loadFactor  the load factor threshold, used to control resizing.
         * Resizing may be performed when the average number of elements per
         * bin exceeds this threshold.
         * @param concurrencyLevel the estimated number of concurrently
         * updating threads. The implementation performs internal sizing
         * to try to accommodate this many threads.
         * @throws IllegalArgumentException if the initial capacity is
         * negative or the load factor or concurrencyLevel are
         * nonpositive.
         */
        @SuppressWarnings("unchecked")
        public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)  //参数检查
                throw new IllegalArgumentException();
            if (concurrencyLevel > MAX_SEGMENTS)    //ConcurrentcyLevel实际上就是最大并发数
                concurrencyLevel = MAX_SEGMENTS;
            // Find power-of-two sizes best matching arguments
            int sshift = 0;
            int ssize = 1;
            while (ssize < concurrencyLevel) {
                ++sshift;
                ssize <<= 1;
            }
            this.segmentShift = 32 - sshift;
            this.segmentMask = ssize - 1;
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            int c = initialCapacity / ssize;
            if (c * ssize < initialCapacity)
                ++c;
            int cap = MIN_SEGMENT_TABLE_CAPACITY;
            while (cap < c)
                cap <<= 1;
            // create segments and segments[0]
            Segment<K,V> s0 =
                new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                                 (HashEntry<K,V>[])new HashEntry[cap]);     //创建一个segment
            Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];         //创建一个segment数组
            UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]     //将s0设置为ss的第一个元素
            this.segments = ss;             //将ss作为segments
        }
    

    JDK7中的ConcurrentHashMap源码中put方法

    
        /**
         * Maps the specified key to the specified value in this table.
         * Neither the key nor the value can be null.
         *
         * <p> The value can be retrieved by calling the <tt>get</tt> method
         * with a key that is equal to the original key.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>
         * @throws NullPointerException if the specified key or value is null
         */
        @SuppressWarnings("unchecked")
        public V put(K key, V value) {
            Segment<K,V> s;
            if (value == null)
                throw new NullPointerException();
            int hash = hash(key);       // 计算Hash值
            int j = (hash >>> segmentShift) & segmentMask;      //计算下标j
            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                s = ensureSegment(j);       //若j处有segment就返回,若没有就创建并返回
            return s.put(key, hash, value, false);  //将值put到segment中去
        }
    
            // Segment 中put数据的方法
            final V put(K key, int hash, V value, boolean onlyIfAbsent) {
                HashEntry<K,V> node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);        //如果tryLock成功,就返回null,否则。。。
                V oldValue;
                try {
                    HashEntry<K,V>[] tab = table;
                    int index = (tab.length - 1) & hash;        //根据table数组的长度 和 hash值计算index小标
                    HashEntry<K,V> first = entryAt(tab, index); //找到table数组在 index处链表的头部
                    for (HashEntry<K,V> e = first;;) {      //从first开始遍历链表
                        if (e != null) {                    //若e!=null
                            K k;
                            if ((k = e.key) == key ||
                                (e.hash == hash && key.equals(k))) {        //如果key相同
                                oldValue = e.value;                 //获取旧值
                                if (!onlyIfAbsent) {                //若absent=false
                                    e.value = value;                //覆盖旧值
                                    ++modCount;                     //
                                }
                                break;      //若已经找到,就退出链表遍历
                            }
                            e = e.next;     //若key不相同,继续遍历
                        }
                        else {              //直到e为null
                            if (node != null)   //将元素放到链表头部
                                node.setNext(first);
                            else
                                node = new HashEntry<K,V>(hash, key, value, first); //创建新的Entry
                            int c = count + 1;      //count 用来记录元素个数
                            if (c > threshold && tab.length < MAXIMUM_CAPACITY)     //如果hashmap元素个数超过threshold,并且table长度小于最大容量
                                rehash(node);       //rehash跟resize的功能差不多,将table的长度变为原来的两倍,重新打包entries,并将给定的node添加到新的table
                            else        //如果还有容量
                                setEntryAt(tab, index, node);   //就在index处添加链表节点
                            ++modCount;     //修改操作数
                            count = c;      //将count+1
                            oldValue = null;    //
                            break;
                        }
                    }
                } finally {
                    unlock();           //执行完操作后,释放锁
                }
                return oldValue;        //返回oldValue
            }
    
      /**  将table的长度变为原来的两倍,重新打包entries,并将给定的node添加到新的table
             * Doubles size of table and repacks entries, also adding the
             * given node to new table
             */
            @SuppressWarnings("unchecked")
            private void rehash(HashEntry<K,V> node) {
                /*
                 * Reclassify nodes in each list to new table.  Because we
                 * are using power-of-two expansion, the elements from
                 * each bin must either stay at same index, or move with a
                 * power of two offset. We eliminate unnecessary node
                 * creation by catching cases where old nodes can be
                 * reused because their next fields won't change.
                 * Statistically, at the default threshold, only about
                 * one-sixth of them need cloning when a table
                 * doubles. The nodes they replace will be garbage
                 * collectable as soon as they are no longer referenced by
                 * any reader thread that may be in the midst of
                 * concurrently traversing table. Entry accesses use plain
                 * array indexing because they are followed by volatile
                 * table write.
                 */
                HashEntry<K,V>[] oldTable = table;
                int oldCapacity = oldTable.length;
                int newCapacity = oldCapacity << 1;
                threshold = (int)(newCapacity * loadFactor);
                HashEntry<K,V>[] newTable =
                    (HashEntry<K,V>[]) new HashEntry[newCapacity];
                int sizeMask = newCapacity - 1;
                for (int i = 0; i < oldCapacity ; i++) {
                    HashEntry<K,V> e = oldTable[i];
                    if (e != null) {
                        HashEntry<K,V> next = e.next;
                        int idx = e.hash & sizeMask;
                        if (next == null)   //  Single node on list
                            newTable[idx] = e;
                        else { // Reuse consecutive sequence at same slot
                            HashEntry<K,V> lastRun = e;
                            int lastIdx = idx;
                            for (HashEntry<K,V> last = next;
                                 last != null;
                                 last = last.next) {
                                int k = last.hash & sizeMask;
                                if (k != lastIdx) {
                                    lastIdx = k;
                                    lastRun = last;
                                }
                            }
                            newTable[lastIdx] = lastRun;
                            // Clone remaining nodes
                            for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                                V v = p.value;
                                int h = p.hash;
                                int k = h & sizeMask;
                                HashEntry<K,V> n = newTable[k];
                                newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                            }
                        }
                    }
                }
                int nodeIndex = node.hash & sizeMask; // add the new node
                node.setNext(newTable[nodeIndex]);
                newTable[nodeIndex] = node;
                table = newTable;
            }
    

    JDK7中的ConcurrentHashMap源码中get方法

    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code key.equals(k)},
         * then this method returns {@code v}; otherwise it returns
         * {@code null}.  (There can be at most one such mapping.)
         *
         * @throws NullPointerException if the specified key is null
         */
        public V get(Object key) {
            Segment<K,V> s; // manually integrate access methods to reduce overhead
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
                for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                         (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                     e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                        return e.value;
                }
            }
            return null;
        }
    

    JDK8中的ConcurrentHashMap源码解读

    JDK8中的ConcurrentHashMap取消了基于 Segment 的分段锁思想,改用 CAS + synchronized 控制并发操作,锁的粒度变得更小,并发度更高。并且追随JDK8的HashMap底层实现,使用数组+链表+红黑树进行数据存储。

    img

    JDK8中的ConcurrentHashMap源码中的主要字段

    private static final int MAXIMUM_CAPACITY = 1 << 30;
    
    private static final int DEFAULT_CAPACITY = 16;
    
    private static final float LOAD_FACTOR = 0.75f;
    
    static final int TREEIFY_THRESHOLD = 8;
    
    static final int UNTREEIFY_THRESHOLD = 6;
    
    static final int MIN_TREEIFY_CAPACITY = 64;
    
    private static final int MIN_TRANSFER_STRIDE = 16;
    
    static final int MOVED     = -1; // hash for forwarding nodes       //转发节点的hash值
    static final int TREEBIN   = -2; // hash for roots of trees     //树的根节点的hash值
    static final int RESERVED  = -3; // hash for transient reservations     //临时节点的 hash值
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash //正常节点的hash值
    

    JDK8中的ConcurrentHashMap源码中构造器

    
        /**
         * Creates a new, empty map with the default initial table size (16).
         */
        public ConcurrentHashMap() {
        }
    
        /**
         * Creates a new, empty map with an initial table size
         * accommodating the specified number of elements without the need
         * to dynamically resize.
         *
         * @param initialCapacity The implementation performs internal
         * sizing to accommodate this many elements.
         * @throws IllegalArgumentException if the initial capacity of
         * elements is negative
         */
        public ConcurrentHashMap(int initialCapacity) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException();
            int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                       MAXIMUM_CAPACITY :
                       tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
            this.sizeCtl = cap;
        }
    
        /**
         * Creates a new, empty map with an initial table size based on
         * the given number of elements ({@code initialCapacity}) and
         * initial table density ({@code loadFactor}).
         *
         * @param initialCapacity the initial capacity. The implementation
         * performs internal sizing to accommodate this many elements,
         * given the specified load factor.
         * @param loadFactor the load factor (table density) for
         * establishing the initial table size
         * @throws IllegalArgumentException if the initial capacity of
         * elements is negative or the load factor is nonpositive
         *
         * @since 1.6
         */
        public ConcurrentHashMap(int initialCapacity, float loadFactor) {
            this(initialCapacity, loadFactor, 1);
        }
    
        /**
         * Creates a new, empty map with an initial table size based on
         * the given number of elements ({@code initialCapacity}), table
         * density ({@code loadFactor}), and number of concurrently
         * updating threads ({@code concurrencyLevel}).
         *
         * @param initialCapacity the initial capacity. The implementation
         * performs internal sizing to accommodate this many elements,
         * given the specified load factor.
         * @param loadFactor the load factor (table density) for
         * establishing the initial table size
         * @param concurrencyLevel the estimated number of concurrently
         * updating threads. The implementation may use this value as
         * a sizing hint.
         * @throws IllegalArgumentException if the initial capacity is
         * negative or the load factor or concurrencyLevel are
         * nonpositive
         */
        public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (initialCapacity < concurrencyLevel)   // Use at least as many bins
                initialCapacity = concurrencyLevel;   // as estimated threads
            long size = (long)(1.0 + (long)initialCapacity / loadFactor);
            int cap = (size >= (long)MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSizeFor((int)size);
            this.sizeCtl = cap;
        }
    

    JDK8中的ConcurrentHashMap源码中的put方法

    
        /**
         * Maps the specified key to the specified value in this table.
         * Neither the key nor the value can be null.
         *
         * <p>The value can be retrieved by calling the {@code get} method
         * with a key that is equal to the original key.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with {@code key}, or
         *         {@code null} if there was no mapping for {@code key}
         * @throws NullPointerException if the specified key or value is null
         */
        public V put(K key, V value) {
            return putVal(key, value, false);
        }
    
        /** Implementation for put and putIfAbsent */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();
            int hash = spread(key.hashCode());      //计算hash值
            int binCount = 0;
            for (Node<K,V>[] tab = table;;) {   //自旋
                Node<K,V> f; int n, i, fh;
                if (tab == null || (n = tab.length) == 0)       //table==null || table.length==0
                    tab = initTable();                          //就initTable
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {    //若下标 i 处的元素为null
                    if (casTabAt(tab, i, null,                           //直接用CAS操作,i处的元素
                                 new Node<K,V>(hash, key, value, null)))
                        break;                   // no lock when adding to empty bin   想emptybin中假如元素的时候,不需要加锁
                }
                else if ((fh = f.hash) == MOVED)    //若下标 i 处的元素不为null,且f.hash==MOVED MOVED为常量值-1
                    tab = helpTransfer(tab, f);     //
                else {                              //如果是一般的节点
                    V oldVal = null;
                    synchronized (f) {              //当头部元素不为null,且不需要转换成树时,需要进行同步操作
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {          //若 链表头部hash值 >=0
                                binCount = 1;
                                for (Node<K,V> e = f;; ++binCount) {
                                    K ek;
                                    if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                         (ek != null && key.equals(ek)))) {     //如果key相同
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)      //且不为absent
                                            e.val = value;      //旧值覆盖新值
                                        break;
                                    }
                                    Node<K,V> pred = e;
                                    if ((e = e.next) == null), {     //如果链表遍历完成,还没退出,说明没有相同的key存在,在尾部添加节点
                                        pred.next = new Node<K,V>(hash, key,
                                                                  value, null);
                                        break;
                                    }
                                }
                            }
                            else if (f instanceof TreeBin) {        //如果f是Tree的节点
                                Node<K,V> p;
                                binCount = 2;
                                if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                               value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        if (oldVal != null)
                            return oldVal;
                        break;
                    }
                }
            }
            addCount(1L, binCount);
            return null;
        }
    
        /**
         * Initializes table, using the size recorded in sizeCtl.
         *///通过CAS抢sizeCtl,来抢占initTable的资格,其他线程自旋等待,直到table不为null
        private final Node<K,V>[] initTable() {
            Node<K,V>[] tab; int sc;
            while ((tab = table) == null || tab.length == 0) {
                if ((sc = sizeCtl) < 0)
                    Thread.yield(); // lost initialization race; just spin  //线程让步,让其他线程优先执行
                else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if ((tab = table) == null || tab.length == 0) {
                            int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                            @SuppressWarnings("unchecked")
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; //初始化数组
                            table = tab = nt;               //将nt赋值给table
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                    break;
                }
            }
            return tab;
        }
    

    JDK8中的ConcurrentHashMap源码中的get方法

        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code key.equals(k)},
         * then this method returns {@code v}; otherwise it returns
         * {@code null}.  (There can be at most one such mapping.)
         *
         * @throws NullPointerException if the specified key is null
         */
        public V get(Object key) {
            Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
            int h = spread(key.hashCode());
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (e = tabAt(tab, (n - 1) & h)) != null) {
                if ((eh = e.hash) == h) {
                    if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                        return e.val;
                }
                else if (eh < 0)
                    return (p = e.find(h, key)) != null ? p.val : null;
                while ((e = e.next) != null) {
                    if (e.hash == h &&
                        ((ek = e.key) == key || (ek != null && key.equals(ek))))
                        return e.val;
                }
            }
            return null;
        }
    

  • 相关阅读:
    oracle的nvl函数的用法
    简单实用的MD5加密算法
    oracle触发器使用笔记
    Html学习
    连接字符串
    oracle触发器使用笔记2
    oracle中如何给有空值的数据排序
    Zend Frame 添加Smarty模板引擎
    HDU 2464 A Pair of Graph
    POJ 1466 Girls and Boys
  • 原文地址:https://www.cnblogs.com/coding-diary/p/11266349.html
Copyright © 2020-2023  润新知