*题目描述:
考虑一个只包含小写拉丁字母的字符串s。我们定义s的一个子串t的“出现值”为t在s中的出现次数乘以t的长度。请你求出s的所有回文子串中的最大出现值。
*输入:
输入只有一行,为一个只包含小写字母(a -z)的非空字符串s。
*输出:
输出一个整数,为逝查回文子串的最大出现值。
*样例输入:
【样例输入l】
abacaba
【样例输入2】
www
*样例输出:
【样例输出l】
7
【样例输出2】
4
*提示:
一个串是回文的,当且仅当它从左到右读和从右到左读完全一样。
在第一个样例中,回文子串有7个:a,b,c,aba,aca,bacab,abacaba,其中:
● a出现4次,其出现值为4:1:1=4
● b出现2次,其出现值为2:1:1=2
● c出现1次,其出现值为l:1:l=l
● aba出现2次,其出现值为2:1:3=6
● aca出现1次,其出现值为1=1:3=3
●bacab出现1次,其出现值为1:1:5=5
● abacaba出现1次,其出现值为1:1:7=7
故最大回文子串出现值为7。
【数据规模与评分】
数据满足1≤字符串长度≤300000。
*题解:
回文自动机。把回文自动机构出来然后cmax一下每个节点的len*cnt就好了。
推荐一篇好的回文自动机的blog。
*代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif
#ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
#endif
#define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
char B[1 << 15], *S = B, *T = B;
inline int FastIn()
{
R char ch; R int cnt = 0; R bool minus = 0;
while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
ch == '-' ? minus = 1 : cnt = ch - '0';
while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
return minus ? -cnt : cnt;
}
#define maxn 300010
char str[maxn];
int next[maxn][26], fail[maxn], len[maxn], cnt[maxn], last, tot, n;
inline int new_node(R int l)
{
len[++tot] = l;
return tot;
}
inline void init()
{
tot = -1;
new_node(0);
new_node(-1);
str[0] = -1;
fail[0] = 1;
}
inline int get_fail(R int x)
{
while (str[n - len[x] - 1] != str[n]) x = fail[x];
return x;
}
inline void extend(R int c)
{
++n;
R int cur = get_fail(last);
if (!next[cur][c])
{
R int now = new_node(len[cur] + 2);
fail[now] = next[get_fail(fail[cur])][c];
next[cur][c] = now;
}
last = next[cur][c];
++cnt[last];
}
long long ans;
inline void count()
{
for (R int i = tot; i; --i)
{
cnt[fail[i]] += cnt[i];
cmax(ans, 1ll * len[i] * cnt[i]);
}
}
int main()
{
// setfile();
scanf("%s", str + 1);
init();
for (R int i = 1; str[i]; ++i)
extend(str[i] - 'a');
count();
printf("%lld
", ans );
return 0;
}