• 【Deep Learning】Tensorflow MNIST测试


    这里写图片描述

    MNIST数据集下载

    下载地址:http://yann.lecun.com/exdb/mnist/

    新建测试代码

        import tensorflow.examples.tutorials.mnist.input_data as input_data
        import tensorflow as tf
    
        mnist = input_data.read_data_sets('E:DLdata', one_hot=True)
        sess = tf.InteractiveSession()
        x = tf.placeholder("float", shape=[None, 784])
        y_ = tf.placeholder("float", shape=[None, 10])
        W = tf.Variable(tf.zeros([784, 10]))
        b = tf.Variable(tf.zeros([10]))
        y = tf.nn.softmax(tf.matmul(x,W) + b)
        y_ = tf.placeholder("float", [None,10])
        cross_entropy = -tf.reduce_sum(y_*tf.log(y))
        train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
        init = tf.initialize_all_variables()
        sess = tf.Session()
        sess.run(init)
        for i in range(10000):
            batch_xs, batch_ys = mnist.train.next_batch(100)
            sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
        correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
        print("正确率",sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    
        sess.close();

    输出结果:正确率 0.9191

    运行过程中查看GPU使用情况:

    命令行输入:nvidia-smi

  • 相关阅读:
    linux脚本mysql服务与keepalived服务高可用脚本
    linux脚本启动服务脚本
    linux脚本数据库备份脚本
    linux脚本清理日志文件脚本
    最大数字
    求阶乘
    素数
    水仙花数
    js基础1
    css常用属性2
  • 原文地址:https://www.cnblogs.com/cnsec/p/13286751.html
Copyright © 2020-2023  润新知