MNIST数据集下载
下载地址:http://yann.lecun.com/exdb/mnist/
新建测试代码
import tensorflow.examples.tutorials.mnist.input_data as input_data
import tensorflow as tf
mnist = input_data.read_data_sets('E:DLdata', one_hot=True)
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
y_ = tf.placeholder("float", [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(10000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("正确率",sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
sess.close();
输出结果:正确率 0.9191
运行过程中查看GPU使用情况:
命令行输入:nvidia-smi