• [LeetCode] 526. Beautiful Arrangement


    Suppose you have n integers labeled 1 through n. A permutation of those n integers perm (1-indexed) is considered a beautiful arrangement if for every i (1 <= i <= n), either of the following is true:

    • perm[i] is divisible by i.
    • i is divisible by perm[i].

    Given an integer n, return the number of the beautiful arrangements that you can construct.

    Example 1:

    Input: n = 2
    Output: 2
    Explanation: 
    The first beautiful arrangement is [1,2]:
        - perm[1] = 1 is divisible by i = 1
        - perm[2] = 2 is divisible by i = 2
    The second beautiful arrangement is [2,1]:
        - perm[1] = 2 is divisible by i = 1
        - i = 2 is divisible by perm[2] = 1
    

    Example 2:

    Input: n = 1
    Output: 1

    Constraints:

    • 1 <= n <= 15

    优美的排列。

    假设有从 1 到 N 的 N 个整数,如果从这 N 个数字中成功构造出一个数组,使得数组的第 i 位 (1 <= i <= N) 满足如下两个条件中的一个,我们就称这个数组为一个优美的排列。条件:

    第 i 位的数字能被 i 整除
    i 能被第 i 位上的数字整除
    现在给定一个整数 N,请问可以构造多少个优美的排列?

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/beautiful-arrangement
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    思路是backtracking。既然这个所谓的优美的排列是需要试探所有的数字的,所以用backtracking是比较合适的。

    时间O(k) - 一共有N个数字但是只有K种排列

    空间O(n) - 回溯用到的栈空间

    Java实现

     1 class Solution {
     2     int count = 0;
     3 
     4     public int countArrangement(int n) {
     5         boolean[] visited = new boolean[n + 1];
     6         helper(n, 1, visited);
     7         return count;
     8     }
     9 
    10     private void helper(int n, int start, boolean[] visited) {
    11         if (start > n) {
    12             count++;
    13             return;
    14         }
    15         for (int i = 1; i <= n; i++) {
    16             if (!visited[i] && (start % i == 0 || i % start == 0)) {
    17                 visited[i] = true;
    18                 helper(n, start + 1, visited);
    19                 visited[i] = false;
    20             }
    21         }
    22     }
    23 }

    LeetCode 题目总结

  • 相关阅读:
    uva 10900
    uva 11181
    Codeforces Round #256 (Div. 2) Multiplication Table
    UVALive 3977
    LA 4384
    Linear Regression
    Hadoop InputFormat浅析
    codeforces 432D Prefixes and Suffixes
    php学习小记2 类与对象
    php学习小记1
  • 原文地址:https://www.cnblogs.com/cnoodle/p/14233324.html
Copyright © 2020-2023  润新知