• HDU2017多校联合 contest 2


    1001:Is Derek lying?

    题意:

    给你两个人的成绩和答案,判断这两个成绩是否合理。

    思路:

    先对字符串进行比较,得到相同的选项数same,和不同的选项数diff。如果两个人中最小的成绩小于same,那说明他们相同的选项中有错的。成绩最高的那个对的选项数除了same之外是否超过diff,否者这个成绩是不合理的。要是两个人的成绩大于same,检查他们不相等的成绩是否超过diff。

    #include "bits/stdc++.h"
    using namespace std;
    char sa[300000 + 10], sb[300000 + 10];
    int main(int argc, char const *argv[])
    {
        int t, n;
        scanf("%d", &t);
        while (t--) {
            int ma, mb;
            scanf("%d%d%d", &n, &ma, &mb);
            scanf("%s%s", &sa, &sb);
            int same = 0, diff = 0;
            for (int i = 0; i < n; i++) {
                if (sa[i] == sb[i]) same++;
                else diff++;
            }
            if (same > min(ma, mb)) {
                if (diff < abs(ma - mb)) printf("Lying
    ");
                else printf("Not lying
    ");
            } 
            else {
                if (diff < ma + mb - 2*same) printf("Lying
    ");
                else printf("Not lying
    ");
            }
        }
        return 0;
    }
    View Code

    1003:Maximum Sequence

    题意:

    给你两个长度为$n$的序列A$(nleq a_i leq 250000)$,B$[1leq b_ileq n]$。根据$a_ileq max{a_j-jmid b_k≤j<i}$, 求出序列A的后n个元素,并且使得后n和个数最大。

    思路:

    可以看出B序列的顺序对答案没有影响。先把B升序排列,从最小的开始构造,用一个优先队列维护A,每次弹出符合条件的最大值。

    #include "bits/stdc++.h"
    using namespace std;
    const int MOD = 1e9 + 7;
    const int maxn = 250010;
    typedef long long LL;
    int b[maxn];
    struct node {
        int num, id;
        friend bool operator < (node a, node b) {  
            return a.num < b.num;
        }  
    }a;
    int main(int argc, char const *argv[])
    {
        int n;
        while (scanf("%d", &n) != EOF) {
            priority_queue<node> que;
            for (int i = 0; i < n; i++) {
                scanf("%d", &a.num); a.id = i + 1;
                a.num -= a.id;
                que.push(a);
    
            } 
            for (int i = 0; i < n; i++) scanf("%d", &b[i]);
            sort(b, b + n);
            LL ans = 0;
            int cnt = 0;
            for (int i = 0; i < n; i++) {
                while (que.top().id < b[i]) que.pop();
                a.id = ++cnt+n;
                a.num = que.top().num - a.id;
                que.push(a);
                ans = (ans + que.top().num)%MOD;
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    View Code

    1009:TrickGCD

    题意:

    给你序列A,序列B,满足 1. $1leq b_ileq a_i$ 2.For each pair$(l,r),(1leq lleq rleq n),gcd(b_l,b_l+1...b_r)geq 2$。

    思路:利用dp[i], 表示gcd是i的个数。可以发现对于k*i和k*i + i - 1的i贡献是一样的。用数组cnt[i]记录前缀和。所以区间cnt[k*i]~cnt[k*i +i - 1]的贡献是相同的。统计这段区间的数量,进行乘法计数,得到dp[i]。最后根据容斥原理对于j=k*i,dp[i] -= dp[j]。

    #include "bits/stdc++.h"
    using namespace std;
    const int MOD = 1e9+7;
    const int maxn = 2e5 + 100;
    typedef long long LL;
    LL cnt[maxn];
    int a[maxn];
    LL dp[maxn];
    LL pow_mod(LL x, LL y) {
        LL res = 1;
        LL base = x;
        while (y) {
            if (y&1) res = res*base%MOD; 
            y >>= 1;
            base=base*base%MOD;
        }
        return res;
    } 
    int main(int argc, char const *argv[])
    {
        int T;
        int kcase = 0;
        scanf("%d", &T);
        while (T--) {
            int n;
            scanf("%d", &n);
            int maxx = 0;
            memset(cnt, 0, sizeof(cnt));
            memset(dp, 0, sizeof(dp));
            for (int i = 0; i < n; i++) {
                scanf("%d", &a[i]); maxx = max(a[i], maxx); 
                cnt[a[i]]++;
            }
            for (int i = 1; i <= maxx; i++) cnt[i] += cnt[i - 1];
            for (int i = maxx; i >= 2; i--) {
                LL res = 1;
                if (cnt[i - 1]) {dp[i] = 0; continue;}
                for (int j = i; j <= maxx; j+=i) {
                    LL sum = cnt[min(maxx, i+j - 1)] - cnt[j - 1];
                    LL s = j/i;
                    if (sum) res = res*pow_mod(s, sum)%MOD;
                }
                dp[i] = res;
            }
            LL ans = 0;
            for (int i = maxx; i >= 2; i--) {
                for (int j = i*2; j <= maxx; j += i) {
                    dp[i] = (dp[i] - dp[j] + MOD)%MOD;
                }
                ans = (ans + dp[i] + MOD)%MOD;
            }
            printf("Case #%d: %lld
    ",++kcase,ans); 
        }
        return 0;
    }
    View Code

    1011:Regular polygon


    题意:

    给你n个整数坐标点,判断这些点可以组成几个正多边形。

    思路:

    想了下,也百度了下,除了正方形,没有其他的在整数点上,直接暴力枚举对角线。

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 510;
    struct Point{
        int x,y;
    } p[maxn];
    double esp = 1e-5;
    bool vis[maxn][maxn];
    int main(int argc, char const *argv[])
    {
        int n;
        while (scanf("%d", &n) != EOF) {
            memset(vis, false, sizeof(vis));
            for(int i = 0;i < n; i++){
                scanf("%d%d", &p[i].x, &p[i].y);
                p[i].x += 200; p[i].y += 200;
                vis[p[i].x][p[i].y] = true;
            }
            int ans = 0;
            for(int i = 0; i < n; i++){
                for(int j = 0; j < n; j++){
                    if(i == j) continue;
                    double dx1= (p[i].x+p[i].y+p[j].x-p[j].y)/2.0;
                    double dy1= (-p[i].x+p[i].y+p[j].x+p[j].y)/2.0;
                    double dx2= (p[i].x-p[i].y+p[j].x+p[j].y)/2.0;
                    double dy2= (p[i].x+p[i].y-p[j].x+p[j].y)/2.0;
                    int x1 = (int)dx1, y1 = (int)dy1, x2 = (int)dx2,y2 = (int)dy2;
                    if (abs(dx1-x1)<esp&&abs(dx2-x2)<esp&&abs(dy2-y2)<esp&&abs(dy1-y1)<esp)
                        if(vis[x1][y1]&&vis[x2][y2]) ans++;
                }
            }
            printf("%d
    ",ans/4);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Android常用开发工具的用法
    搭建Android开发环境
    开篇 Android系统的体系结构
    学习安卓笔记
    C# DllImport用法和路径问题
    jq 实现无限级地区联动 样式为bootstrap
    YII2 日志
    centos6.5 lamp 环境 使用yum安装方法
    mysql 时间戳 按周、日、月 统计方法 附 date格式
    Yii2.0中文开发向导——控制器(Controller)
  • 原文地址:https://www.cnblogs.com/cniwoq/p/7252882.html
Copyright © 2020-2023  润新知