Problem Description
You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1.
Define that the domain of function f is the set of integers from 0 to n−1, and the range of it is the set of integers from 0 to m−1.
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1.
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7.
Input
The input contains multiple test cases.
For each case:
The first line contains two numbers n, m. (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1, the i-th number of which represents ai−1.
The third line contains m numbers, ranged from 0 to m−1, the i-th number of which represents bi−1.
It is guaranteed that ∑n≤106, ∑m≤106.
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
Sample Input
3 2
1 0 2
0 1
3 4
2 0 1
0 2 3 1
Sample Output
Case #1: 4
Case #2: 4
题意:
有两个,数组a是[0~n-1]的排列,数组b是[0~m-1]的排列。现在定义f(i)=b[f(a[i])];
- 问f(i)有多少种取值,使得表达式f(i)=b[f(a[i])]全部合法。
分析:
以第一个样例 a={1,0,2} b={0,1}为例:
那么f(0)=b[f(1)] f(1)=b[f(0)] f(2)=b[f(2)]
这里有两个环分别为 f(0)->f(1) 和f(2)
所以我们的任务就是在b中找环,该环的长度必须为a中环的长度的约数。
为什么必须的是约数呢?
因为如果b的环的长度是a的环的长度的约数的话,那也就意味着用b这个环也能构成a这个环,只不过是多循环了几次而已。
然后找到a中所有环的方案数,累乘便是答案。
为什么要累乘呢?我最开始一直以为要累加。
这个就用到了排列组合的思想,因为肯定要f(i)肯定要满足所有的数,而a中的每个环都相当于从a中取出几个数的方案数,所以总共的方案数应该累乘。
#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
using namespace std;
const int max_n=100010;
const int mod=1e9+7;
int n,m;
int a[max_n],b[max_n],len_b[max_n];
bool vis[max_n];
vector <int>A,fac[max_n];
///构建环,并返回环的大小
int dfs(int N,int *c)
{
if(vis[N])
return 0;
vis[N]=1;
return dfs(c[N],c)+1;
}
void get_fac()
{
for(int i=1; i<=100000; i++)///fac[j]里面保存的是长度为j的环的因子
{
for(int j=i; j<=100000; j+=i)
fac[j].push_back(i);
}
}
int main()
{
int Case=0;
get_fac();
while(~scanf("%d%d",&n,&m))
{
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
for(int i=0; i<m; i++)
scanf("%d",&b[i]);
A.clear();
memset(vis,0,sizeof(vis));
for(int i=0; i<n; i++)
{
if(vis[i]) continue;
A.push_back(dfs(i,a));///a数组中环的长度,重复的长度也是保存的
}
memset(vis,0,sizeof(vis));
memset(len_b,0,sizeof(len_b));
for(int i=0; i<m; i++)
{
if(vis[i]) continue;
len_b[dfs(i,b)]++;///b数组中长度为dfs(i,b)的环的个数
}
long long int ans=1;
for(int i=0,L=A.size(); i<L; i++)
{
int la=A[i];///取出a中的一个长度为la的环
long long res=0;
for(int j=0,ll=fac[la].size(); j<ll; j++)
{
int lb=fac[la][j];///lb是长度为la的环的一个因子
res=(res+(long long )lb*len_b[lb])%mod;///因子个数乘以环的个数就是一功德方案数
}
ans=ans*res%mod;
}
printf("Case #%d: %lld
",++Case,ans);
}
}