• hdu


    题意:N(2 ≤ N ≤ 55)个点,M(0 ≤ M ≤ N*N)条无向边,删除一个点会把与其相邻的点一起删掉。问最少删几次能够删掉全部点。

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3498

    ——>>N个点看成 N 个要被覆盖的列,每一个点作为一行,与其相邻的点的位置在这一行中标为 1,还有它自已的位置也标记为 1。。

    这就是经典的反复覆盖问题了。。于是,DLX上场。。

    #include <cstdio>
    #include <cstring>
    
    const int MAXR = 55 + 10;
    const int MAXC = 55 + 10;
    const int MAXNODE = MAXR * MAXC;
    const int INF = 0x3f3f3f3f;
    
    struct DLX
    {
        int sz;
        int H[MAXR], S[MAXC];
        int row[MAXNODE], col[MAXNODE];
        int U[MAXNODE], D[MAXNODE], L[MAXNODE], R[MAXNODE];
        int Min;
    
        void Init(int n)
        {
            for (int i = 0; i <= n; ++i)
            {
                U[i] = D[i] = i;
                L[i] = i - 1;
                R[i] = i + 1;
            }
            L[0] = n;
            R[n] = 0;
    
            sz = n + 1;
            memset(S, 0, sizeof(S));
            memset(H, -1, sizeof(H));
        }
    
        void Link(const int& r, const int& c)
        {
            row[sz] = r;
            col[sz] = c;
            D[sz] = D[c];
            U[D[c]] = sz;
            D[c] = sz;
            U[sz] = c;
            if (H[r] == -1)
            {
                H[r] = L[sz] = R[sz] = sz;
            }
            else
            {
                R[sz] = R[H[r]];
                L[R[H[r]]] = sz;
                R[H[r]] = sz;
                L[sz] = H[r];
            }
            S[c]++;
            sz++;
        }
    
        void Remove(const int& c)
        {
            for (int i = D[c]; i != c; i = D[i])
            {
                L[R[i]] = L[i];
                R[L[i]] = R[i];
            }
        }
    
        void Restore(const int& c)
        {
            for (int i = U[c]; i != c; i = U[i])
            {
                L[R[i]] = i;
                R[L[i]] = i;
            }
        }
    
        int A()
        {
            int ret = 0;
            bool vis[MAXC];
    
            memset(vis, 0, sizeof(vis));
            for (int i = R[0]; i != 0; i = R[i])
            {
                if (!vis[i])
                {
                    vis[i] = true;
                    ++ret;
                    for (int j = D[i]; j != i; j = D[j])
                    {
                        for (int k = R[j]; k != j; k = R[k])
                        {
                            vis[col[k]] = true;
                        }
                    }
                }
            }
    
            return ret;
        }
    
        void Dfs(int cur)
        {
            if (cur + A() >= Min) return;
    
            if (R[0] == 0)
            {
                if (cur < Min)
                {
                    Min = cur;
                }
                return;
            }
    
            int c = R[0];
            for (int i = R[0]; i != 0; i = R[i])
            {
                if (S[i] < S[c])
                {
                    c = i;
                }
            }
    
            for (int i = D[c]; i != c; i = D[i])
            {
                Remove(i);
                for (int j = R[i]; j != i; j = R[j])
                {
                    Remove(j);
                }
                Dfs(cur + 1);
                for (int j = L[i]; j != i; j = L[j])
                {
                    Restore(j);
                }
                Restore(i);
            }
        }
    
        void Solve()
        {
            Min = INF;
            Dfs(0);
            printf("%d
    ", Min);
        }
    
    } dlx;
    
    int N, M;
    
    void Read()
    {
        int a, b;
    
        dlx.Init(N);
        while (M--)
        {
            scanf("%d%d", &a, &b);
            dlx.Link(a, b);
            dlx.Link(b, a);
        }
        for (int i = 1; i <= N; ++i)
        {
            dlx.Link(i, i);
        }
    }
    
    int main()
    {
        while (scanf("%d%d", &N, &M) == 2)
        {
            Read();
            dlx.Solve();
        }
    
        return 0;
    }
    


  • 相关阅读:
    ABP 异常
    Vmware中安装的Ubuntu不能全屏问题解决
    centos7.4 文件权限
    webpack 入门(1)
    webpack(2) 概念
    centos7.4 rpm命令
    centos7.4 which、whereis、locate的使用
    centos7.4 find命令
    centos7.4 lsof用法
    centos7.4 用户和组的管理
  • 原文地址:https://www.cnblogs.com/clnchanpin/p/6914389.html
Copyright © 2020-2023  润新知