• [python] RRT快速拓展随机树


    """
    version1.1,2018-05-09
    《基于智能优化与RRT算法的无人机任务规划方法研究》博士论文
    《基于改进人工势场法的路径规划算法研究》硕士论文
    
    """
    
    import matplotlib.pyplot as plt
    import random
    import math
    import copy
    
    show_animation = True
    
    
    class Node(object):
        """
        RRT Node
        """
    
        def __init__(self, x, y):
            self.x = x
            self.y = y
            self.parent = None
    
    
    class RRT(object):
        """
        Class for RRT Planning
        """
    
        def __init__(self, start, goal, obstacle_list, rand_area):
            """
            Setting Parameter
    
            start:Start Position [x,y]
            goal:Goal Position [x,y]
            obstacleList:obstacle Positions [[x,y,size],...]
            randArea:random sampling Area [min,max]
    
            """
            self.start = Node(start[0], start[1])
            self.end = Node(goal[0], goal[1])
            self.min_rand = rand_area[0]
            self.max_rand = rand_area[1]
            self.expandDis = 1.0
            self.goalSampleRate = 0.05  # 选择终点的概率是0.05
            self.maxIter = 500
            self.obstacleList = obstacle_list
            self.nodeList = [self.start]
    
        def random_node(self):
            """
            产生随机节点
            :return:
            """
            node_x = random.uniform(self.min_rand, self.max_rand)
            node_y = random.uniform(self.min_rand, self.max_rand)
            node = [node_x, node_y]
    
            return node
    
        @staticmethod
        def get_nearest_list_index(node_list, rnd):
            """
            :param node_list:
            :param rnd:
            :return:
            """
            d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in node_list]
            min_index = d_list.index(min(d_list))
            return min_index
    
        @staticmethod
        def collision_check(new_node, obstacle_list):
            a = 1
            for (ox, oy, size) in obstacle_list:
                dx = ox - new_node.x
                dy = oy - new_node.y
                d = math.sqrt(dx * dx + dy * dy)
                if d <= size:
                    a = 0  # collision
    
            return a  # safe
    
        def planning(self):
            """
            Path planning
    
            animation: flag for animation on or off
            """
    
            while True:
                # Random Sampling
                if random.random() > self.goalSampleRate:
                    rnd = self.random_node()
                else:
                    rnd = [self.end.x, self.end.y]
    
                # Find nearest node
                min_index = self.get_nearest_list_index(self.nodeList, rnd)
                # print(min_index)
    
                # expand tree
                nearest_node = self.nodeList[min_index]
    
                # 返回弧度制
                theta = math.atan2(rnd[1] - nearest_node.y, rnd[0] - nearest_node.x)
    
                new_node = copy.deepcopy(nearest_node)
                new_node.x += self.expandDis * math.cos(theta)
                new_node.y += self.expandDis * math.sin(theta)
                new_node.parent = min_index
    
                if not self.collision_check(new_node, self.obstacleList):
                    continue
    
                self.nodeList.append(new_node)
    
                # check goal
                dx = new_node.x - self.end.x
                dy = new_node.y - self.end.y
                d = math.sqrt(dx * dx + dy * dy)
                if d <= self.expandDis:
                    print("Goal!!")
                    break
    
                if True:
                    self.draw_graph(rnd)
    
            path = [[self.end.x, self.end.y]]
            last_index = len(self.nodeList) - 1
            while self.nodeList[last_index].parent is not None:
                node = self.nodeList[last_index]
                path.append([node.x, node.y])
                last_index = node.parent
            path.append([self.start.x, self.start.y])
    
            return path
    
        def draw_graph(self, rnd=None):
            """
            Draw Graph
            """
            print('aaa')
            plt.clf()  # 清除上次画的图
            if rnd is not None:
                plt.plot(rnd[0], rnd[1], "^g")
            for node in self.nodeList:
                if node.parent is not None:
                    plt.plot([node.x, self.nodeList[node.parent].x], [
                             node.y, self.nodeList[node.parent].y], "-g")
    
            for (ox, oy, size) in self.obstacleList:
                plt.plot(ox, oy, "sk", ms=10*size)
    
            plt.plot(self.start.x, self.start.y, "^r")
            plt.plot(self.end.x, self.end.y, "^b")
            plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand])
            plt.grid(True)
            plt.pause(0.01)
    
        def draw_static(self, path):
            """
            画出静态图像
            :return:
            """
            plt.clf()  # 清除上次画的图
    
            for node in self.nodeList:
                if node.parent is not None:
                    plt.plot([node.x, self.nodeList[node.parent].x], [
                        node.y, self.nodeList[node.parent].y], "-g")
    
            for (ox, oy, size) in self.obstacleList:
                plt.plot(ox, oy, "sk", ms=10*size)
    
            plt.plot(self.start.x, self.start.y, "^r")
            plt.plot(self.end.x, self.end.y, "^b")
            plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand])
    
            plt.plot([data[0] for data in path], [data[1] for data in path], '-r')
            plt.grid(True)
            plt.show()
    
    
    def main():
        print("start RRT path planning")
    
        obstacle_list = [
            (5, 1, 1),
            (3, 6, 2),
            (3, 8, 2),
            (1, 1, 2),
            (3, 5, 2),
            (9, 5, 2)]
    
        # Set Initial parameters
        rrt = RRT(start=[0, 0], goal=[8, 9], rand_area=[-2, 10], obstacle_list=obstacle_list)
        path = rrt.planning()
        print(path)
    
        # Draw final path
        if show_animation:
            plt.close()
            rrt.draw_static(path)
    
    
    if __name__ == '__main__':
        main()
    RRT快速拓展随机树 python实现

  • 相关阅读:
    2015/5/10站立会议(补发)
    2015/5/11站立会议(补发)
    2015/5/12站立会议(补发)
    5/13站立会议(补发)
    面向对象——抽象类和接口
    面向对象(三)——静态
    面向对象——三大特性(封装、继承、多态)
    ADO.NET
    面向对象 封装练习题
    面向对象 封装
  • 原文地址:https://www.cnblogs.com/clemente/p/9543106.html
Copyright © 2020-2023  润新知