• 2019dx#7


    Solved Pro.ID Title Ratio(Accepted / Submitted)
      1001 A + B = C                   10.48%(301/2872)
      1002 Bracket Sequences on Tree 11.27%(16/142)
      1003 Cuber Occurrence 6.67%(1/15)
      1004 Data Structure Problem 23.08%(3/13)
      1005 Equation 0.00%(0/63)
      1006 Final Exam          推公式,田忌赛马 5.06%(297/5872)
      1007 Getting Your Money Back 12.42%(20/161)
      1008 Halt Hater 14.77%(61/413)
      1009 Intersection of Prisms 0.00%(0/2)
      1010 Just Repeat          博弈,贪心 15.04%(128/851)
      1011 Kejin Player          期望DP 21.20%(544/2566)

    1001 A + B = C

    题意:

    给定a,b,c($a, b, c le 10 ^{100000}$),求一组x, y, z满足$a imes 10^x + b imes 10^y = c imes 10^z$ 。

    思路:

    先把每个数末尾的0去掉,然后可以发现满足如下等式之一$$ a + b = c imes 10 ^k $$ $$ a imes 10 ^k + b = c $$ $$ a + b imes 10 ^ k = c$$就行了。

    由于是大数,可以利用哈希,计算等式中的k,可以移项,乘逆元,预处理mod意义下指数。

    然后我用到双哈希保险

    // #pragma GCC optimize(2)
    // #pragma GCC optimize(3)
    // #pragma GCC optimize(4)
    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    #include <unordered_map>
    // #include<bits/extc++.h>
    // using namespace __gnu_pbds;
    using namespace std;
    #define pb push_back
    #define fi first
    #define se second
    #define debug(x) cerr<<#x << " := " << x << endl;
    #define bug cerr<<"-----------------------"<<endl;
    #define FOR(a, b, c) for(int a = b; a <= c; ++ a)
    
    typedef long long ll;
    typedef unsigned long long ull;
    typedef long double ld;
    typedef pair<int, int> pii;
    typedef pair<ll, ll> pll;
    
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3f;
    const int mod = 998244353;
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    /**********showtime************/
                const int maxn = 1e5+9;
                const int N = 1e5+9;
                char a[maxn],b[maxn],c[maxn];
                char d[maxn];
                int mod1 = 998244353, mod2 = 1e9+7;
                int ten1[N], ten2[N];
                unordered_map<int,int>mp1,mp2;
                void init(){
                    ten1[0] = ten2[0] = 1;
                    mp1[1] = mp2[1] = 0;
                    for(int i=1; i<N; i++)
                    {
                        ten1[i] = 1ll*ten1[i-1] * 10 % mod1;
                        ten2[i] = 1ll*ten2[i-1] * 10 % mod2;
    
                        mp1[ten1[i]] = i;
                        mp2[ten2[i]] = i;
                    }
                }
                ll ksm(ll a, ll b, ll mod){
                    ll res = 1;
                    while(b > 0) {
                        if(b & 1) res = res * a % mod;
                        a = a * a % mod;
                        b = b >> 1;
                    }
                    return res;
                }
    int main(){
                init();
    //            debug("ok");
                int T;  scanf("%d", &T);
    
                while(T--) {
                    scanf("%s%s%s", a, b, c);
                    int alen = strlen(a), blen = strlen(b), clen = strlen(c);
                    int cnta = 0, cntb = 0, cntc = 0;
                    while(a[alen-1] == '0') alen--, cnta ++;
                    while(b[blen-1] == '0') blen--, cntb ++;
                    while(c[clen-1] == '0') clen--, cntc ++;
                    int kk = max(cnta, max(cntb, cntc));
                    a[alen] = '';
                    b[blen] = '';
                    c[clen] = '';
                    ll A1 = 0, B1 = 0, C1 = 0;
                    ll A2 = 0, B2 = 0, C2 = 0;
    
                    for(int i=0; i<alen; i++){
                        A1 = (A1 * 10 + (a[i] - '0') ) % mod1;
                        A2 = (A2 * 10 + (a[i] - '0') ) % mod2;
                    }
    
                    for(int i=0; i<blen; i++){
                        B1 = (B1 * 10 + (b[i] - '0') ) % mod1;
                        B2 = (B2 * 10 + (b[i] - '0') ) % mod2;
                    }
    
                    for(int i=0; i<clen; i++){
                        C1 = (C1 * 10 + (c[i] - '0') ) % mod1;
                        C2 = (C2 * 10 + (c[i] - '0') ) % mod2;
                    }
    
                    int k1 = (A1 + B1) % mod1 * ksm(C1, mod1-2, mod1) % mod1;
                    if(mp1.count(k1))k1 = mp1[k1];
                    else k1 = -1;
                    int k2 = (A2 + B2) % mod2 * ksm(C2, mod2-2, mod2) % mod2;
                    if(mp2.count(k2))k2 = mp2[k2];
                    else k2 = -1;
                    if(k1 == k2 && k1 >= 0) {
                        printf("%d %d %d
    ", kk - cnta, kk - cntb, kk + k1 - cntc);
                        continue;
                    }
    
                    k1 = (C1 - B1) % mod1;
                    if(k1 < 0) k1 += mod1;
                    k1 = k1 * ksm(A1, mod1-2, mod1) % mod1;
                    if(mp1.count(k1))k1 = mp1[k1];
                    else k1 = -1;
    
                    k2 = (C2 - B2) % mod2;
                    if(k2 < 0) k2 += mod2;
                    k2 = k2 * ksm(A2, mod2-2, mod2) % mod2;
                    if(mp2.count(k2))k2 = mp2[k2];
                    else k2 = -1;
                    if(k1 == k2 && k1 >= 0) {
                        printf("%d %d %d
    ", kk + k1 - cnta, kk - cntb, kk - cntc);
                        continue;
                    }
    
                    k1 = (C1 - A1) % mod1;
                    if(k1 < 0) k1 += mod1;
                    k1 = k1 * ksm(B1, mod1-2, mod1) % mod1;
                    if(mp1.count(k1))k1 = mp1[k1];
                    else k1 = -1;
    
                    k2 = (C2 - A2) % mod2;
                    if(k2 < 0) k2 += mod2;
                    k2 = k2 * ksm(B2, mod2-2, mod2) % mod2;
                    if(mp2.count(k2))k2 = mp2[k2];
                    else k2 = -1;
                    if(k1 == k2 && k1 >= 0) {
                        printf("%d %d %d
    ", kk  - cnta, kk  + k1 - cntb, kk - cntc);
                        continue;
                    }
                    puts("-1");
                }
                return 0;
    }
    View Code

    1006 Final Exam

    思路:

    假设每个题目所用的时间为$a_1, a_2, ... , a_n(a_i <= a_{i+1})$

     按老师的想法,为了不让学生过掉n - k 个题目,肯定是把$a_1, a_2,...a_{n-k}$ 对应题目的分值设为$a_1, a_2,...a_{n-k}$.

    然后$$m - a_1 - a_2 - ... - a_{n-k} < a_{n-k+1}$$

    我们给左边+1,再移项,变成

    $$m + 1 le + a_1 + a_2 + ... + a_{n-k} + a_{n-k+1}$$

    可以发现$a_{n-k+1}$最大会被老师卡成$leftlceil  frac{m + 1}{n - k + 1} ight ceil$

    之后的$a_{n-k+2},,,a_{n}$可以等于$a_{n-k+1}$就行了。

    // #pragma GCC optimize(2)
    // #pragma GCC optimize(3)
    // #pragma GCC optimize(4)
    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    // #include<bits/extc++.h>
    // using namespace __gnu_pbds;
    using namespace std;
    #define pb push_back
    #define fi first
    #define se second
    #define debug(x) cerr<<#x << " := " << x << endl;
    #define bug cerr<<"-----------------------"<<endl;
    #define FOR(a, b, c) for(int a = b; a <= c; ++ a)
    
    typedef long long ll;
    typedef long double ld;
    typedef pair<int, int> pii;
    typedef pair<ll, ll> pll;
    
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3f;
    const int mod = 998244353;
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    /**********showtime************/
    
    
    int main(){
                int T;  scanf("%d", &T);
                while(T--) {
                    ll n, m , k;
                    scanf("%lld%lld%lld", &n, &m, &k);
                    ll tmp = (m + 1) / (n - k + 1);
                    if((m+1) % (n - k + 1)) tmp++;
                    ll ans = (k - 1) * tmp + m+ 1;
                    printf("%lld
    ", ans);
                }
    
                return 0;
    }
    View Code

    1008 Halt Hater

    题意:

    一开始你在(0, 0)点,面向Y轴正方向。向左走费用为a,向前走费用为b,向右走费用为0。有T($le 100000$) 组数据,每组给定x,y,a,b,问你到(x,y)的最小费用。

    思路:

    规律题,首先发现,你到(x-1, y+1)(x, y+1), (x-1, y), (x, y) 其中之一就行了。

    然后发现,如果把每个格子看成一个点,那么,相邻格子的费用为a。斜对着的两个格子的费用为min(a, 2 * b)。

    一下跨两步的费用为min(2*a, 2*b)。

    所以我们首先斜着走,然后两步两步走,然后再走一步。

    // #pragma GCC optimize(2)
    // #pragma GCC optimize(3)
    // #pragma GCC optimize(4)
    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    #include <unordered_map>
    // #include<bits/extc++.h>
    // using namespace __gnu_pbds;
    using namespace std;
    #define pb push_back
    #define fi first
    #define se second
    #define debug(x) cerr<<#x << " := " << x << endl;
    #define bug cerr<<"-----------------------"<<endl;
    #define FOR(a, b, c) for(int a = b; a <= c; ++ a)
    
    typedef long long ll;
    typedef unsigned long long ull;
    typedef long double ld;
    typedef pair<int, int> pii;
    typedef pair<ll, ll> pll;
    
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3f;
    const int mod = 998244353;
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    /**********showtime************/
    
                ll a, b, x, y;
                ll check(ll x, ll y) {
    
                    x = abs(x), y = abs(y);
    
                    ll ans = 0;
                    ll m = min(x, y);
    
                    ans += m * min(a, 2ll * b);
                    ll yu = x + y - m - m;
                    ans += (yu / 2) * min(2ll * a , 2ll * b);
    
                    if(yu % 2 == 1) ans += b;
                    return ans;
                }
    int main(){
                int T;  scanf("%d", &T);
                while(T--) {
                    scanf("%lld%lld%lld%lld", &a, &b, &x, &y);
                    ll ans = check(x, y);
                    ans = min(ans, check(x-1, y));
                    ans = min(ans, check(x, y+1));
                    ans = min(ans, check(x-1, y+1));
                    printf("%lld
    ", ans);
                }
                return 0;
    }
    View Code
  • 相关阅读:
    【Java Web】使用URLRewrite实现网站伪静态
    Jsp的include指令静态导入和动态导入的区别
    JSP中使用cookie存储中文
    【转】android加载大量图片内存溢出的三种解决办法
    Android调整TimePicker和DatePicker大小
    使用WebClient实现通讯(Silverlight学习笔记)
    Silverlight 用户控件与自定义控件详解
    利用WebClient和WebRequest类获得网页源代码
    Silverlight中的对象序列化/反序列化
    Flex与FLASH区别及Flex动画效果学习
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/11341725.html
Copyright © 2020-2023  润新知