【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)
题面
题解
这题好神仙啊,窝不会QaQ。
假装一下只有三个元素(a_{i-1},a_i,a_{i+1}),并且满足,(a_{i-1}le a_ige a_{i+1})那么肯定是(a_{i-1}+a_{i+1})、(a_i)这样子分配的。那么两个人的差就是(a_{i-1}+a_{i+1}-a_i),那么我们把(i)和旁边两个元素直接合并就好了,反正只要知道了两个人的差和所有元素之和就能还原答案。
不难发现这样子合并完之后序列要么单增要么单减。
我们发现中间被分开的一段段是一个双端队列,可以从两端取。两侧被分割的部分是一个栈,只能一侧取。显然两侧的按照奇偶可以直接分配好谁去哪一侧。而剩下的部分因为单调,所以显然排序之后两个人一个个轮流取就好了。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,l,r,fr,top;ll S[MAX],sum,ans;bool vis[MAX];
bool check(int p){if(vis[p]||vis[p-1]||vis[p+1])return false;return S[p-1]<=S[p]&&S[p]>=S[p+1];}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
S[++top]=read();sum+=S[top];vis[top]=(S[top]==0);fr^=(bool)(S[top]);
while(top>=3&&check(top-1))S[top-2]=S[top-2]+S[top]-S[top-1],top-=2;
}
for(l=1;!vis[l]&&!vis[l+1]&&S[l]>=S[l+1];l+=2)ans+=(S[l]-S[l+1])*(fr?1:-1);
for(r=top;!vis[r]&&!vis[r-1]&&S[r]>=S[r-1];r-=2)ans+=(S[r]-S[r-1])*(fr?1:-1);
top=0;for(int i=l;i<=r;++i)if(!vis[i])S[++top]=S[i];sort(&S[1],&S[top+1]);
for(int i=top;i;--i)ans+=((top-i)&1)?-S[i]:S[i];
cout<<(sum+ans)/2<<' '<<(sum-ans)/2<<endl;
return 0;
}