【BZOJ3931】【CQOI2015】网络吞吐量(最短路,网络流)
题面
题解
网络流模板题???
SPFA跑出最短路,重新建边后
直接Dinic就行了
大火题嗷。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<vector>
using namespace std;
#define INF 1e18
#define MAX 1000
#define MAXL 100000
#define ll long long
#define int ll
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAXL],E[MAXL];
int h[MAX],cnt=1;
int H[MAX],Cnt=1;
int n,m,level[MAX];
ll dis[MAX],C[MAX];
ll FB[MAXL];
ll G[MAX][MAX];
bool vis[MAX];
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
inline void reAdd(int u,int v,int w)
{
E[Cnt]=(Line){v,H[u],w};FB[Cnt]=Cnt+1;
H[u]=Cnt++;
E[Cnt]=(Line){u,H[v],0};FB[Cnt]=Cnt-1;
H[v]=Cnt++;
}
void spfa()
{
queue<int> Q;
for(int i=1;i<=n;++i)dis[i]=INF,vis[i]=false;
vis[1]=true;dis[1]=0;
Q.push(1);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
ll w=e[i].w+dis[u];
if(dis[v]>w)
{
dis[v]=w;
if(!vis[v]){vis[v]=true;Q.push(v);}
}
}
vis[u]=false;
}
}
void Rebuild()
{
C[n]=INF;C[1]=INF;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(dis[i]+G[i][j]==dis[j]&&i!=j)
reAdd(i,j,min(C[j],C[i]));
}
bool BFS()
{
queue<int> Q;while(!Q.empty())Q.pop();
for(int i=1;i<=n;++i)level[i]=0;
level[1]=1;Q.push(1);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=H[u];i;i=E[i].next)
{
int v=E[i].v;
if(E[i].w&&!level[v])
{
level[v]=level[u]+1;
Q.push(v);
}
}
}
return level[n];
}
ll DFS(int u,ll ff)
{
if(!ff||u==n)return ff;
ll re=0;
for(int i=H[u];i;i=E[i].next)
{
int v=E[i].v;
if(E[i].w&&level[u]+1==level[v])
{
ll gg=DFS(v,min(ff,E[i].w));
re+=gg;ff-=gg;E[i].w-=gg;
E[FB[i]].w+=gg;
}
}
return re;
}
ll Dinic()
{
ll re=0;
while(BFS())re+=DFS(1,INF);
return re;
}
#undef int
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)G[i][j]=INF;
for(ll i=1;i<=m;++i)
{
ll u=read(),v=read(),w=read();
Add(u,v,w);Add(v,u,w);
G[u][v]=G[v][u]=min(G[u][v],w);
}
for(ll i=1;i<=n;++i)C[i]=read();
spfa();
Rebuild();
printf("%lld
",Dinic());
return 0;
}