• HDU


    [ exttt{Description} ]

    有一个名为 233 的矩阵 (a)

    对于第一行,有 (a_{0, 1} = 233)(a_{0, 2} = 2333)(a_{0,3} = 23333) ...

    对于 (forall i, j eq 0),有 (a_{i,j} = a_{i-1, j} + a_{i, j - 1})

    给出 (a_{1, 0}, a_{2, 0}, ..., a_{n, 0}),请在 233 矩阵中求出 (a_{n, m})

    [ exttt{Solution} ]

    不妨设 (a_{0,0} = 23)

    (a_{i, j} = a_{i - 1, j} + a_{i, j - 1}) 这个式子比较熟悉的巨佬们应该都知道:

    [a_{i, j} = sumlimits_{k = 1}^{i} a_{k, j - 1} + a_{0, j} ]

    特别地:

    [a_{0, j} = 10 imes a_{0, j - 1} + 3 ]

    则有:

    [a_{i, j} = sumlimits_{k = 1}^{i} a_{k, j - 1} + 10 imes a_{0, j - 1} + 3 ]

    观察上式,注意到第 (j) 列每个位置上的值都可以由第 (j - 1) 列的若干个项递推而来,又注意到 (n leq 10)(m leq 10^9),于是考虑矩阵乘法加速递推。

    (F(j) = egin{bmatrix} a_{0, j} & a_{1, j} & cdots & a_{n, j} & 3 end{bmatrix}),则有:

    [F(j) = F(j - 1) imes egin{bmatrix} 10 & 10 & 10 & cdots & 10 & 0 \ 0 & 1 & 1 & cdots & 1 & 0 \ 0 & 0 & 1 & cdots & 1 & 0 \ vdots & vdots & vdots & ddots & vdots & vdots \ 0 & 0 & 0 & cdots & 1 & 0 \ 1 & 1 & 1 & cdots & 1 & 1 end{bmatrix} ]

    设转移矩阵为 (G),则 (F(m) = F(0) imes G^m)

    时间复杂度 (mathcal{O(n^3 log m)})

    [ exttt{Code} ]

    #include <cstdio>
    #include <cstring>
    
    using namespace std;
    
    namespace IO {
        static char buf[1 << 20], *fs, *ft;
        inline char gc() {
            if (fs == ft) {
    			ft = (fs = buf) + fread(buf, 1, 1 << 20, stdin);
    			if (fs == ft) return EOF;
            }
            return *fs ++;
        }
        #define gc() getchar()
    	inline int read() {
    		int x = 0, f = 1; char s = gc();
    		while (s < '0' || s > '9') {if (s == '-') f = -f; s = gc();}
    		while (s >= '0' && s <= '9') {x = x * 10 + s - '0'; s = gc();}
    		return x * f;
    	}
    } using IO :: read;
    
    const int N = 110;
    
    const int mod = 1e7 + 7;
    
    int n, m;
    
    int f[N];
    
    int G[N][N];
    
    void mul(int d[N][N], int a[N][N], int b[N][N]) {
    	static int c[N][N]; memset(c, 0, sizeof(c));
    	for (int i = 0; i <= n + 1; i ++)
    		for (int j = 0; j <= n + 1; j ++)
    			for (int k = 0; k <= n + 1; k ++)
    				c[i][j] = (c[i][j] + 1ll * a[i][k] * b[k][j]) % mod;
    	memcpy(d, c, sizeof(c));
    }
    
    void mulstar(int d[N], int a[N], int b[N][N]) {
    	static int c[N]; memset(c, 0, sizeof(c));
    	for (int j = 0; j <= n + 1; j ++)
    		for (int k = 0; k <= n + 1; k ++)
    			c[j] = (c[j] + 1ll * a[k] * b[k][j]) % mod;
    	memcpy(d, c, sizeof(c));
    }
    
    void work() {
    	f[0] = 23;
    	for (int i = 1; i <= n; i ++) f[i] = read();
    	f[n + 1] = 3;
    
    	for (int j = 0; j <= n; j ++) {
    		G[0][j] = 10;
    
    		for (int i = 1; i <= n; i ++)
    			if (i <= j) G[i][j] = 1;
    			else G[i][j] = 0;
    	} 
    
    	for (int i = 0; i <= n; i ++)
    		G[i][n + 1] = 0;
    
    	for (int j = 0; j <= n + 1; j ++)
    		G[n + 1][j] = 1;
    
    	for (int b = m; b; b >>= 1) {
    		if (b & 1) mulstar(f, f, G);
    		mul(G, G, G);
    	}
    
    	printf("%d
    ", f[n]);
    }
    
    int main() {
    	while (scanf("%d%d", &n, &m) != EOF)    work();
    
    	return 0; 
    } 
    

    [ exttt{Thanks} exttt{for} exttt{reading} ]

  • 相关阅读:
    1052 卖个萌 (20 分)
    1046 划拳 (15 分)
    1051 复数乘法 (15 分)
    1042 字符统计 (20 分)哈希
    1041 考试座位号 (15 分)哈希
    1061 判断题 (15 分)
    1093 字符串A+B (20 分)简单哈希
    Hibernate框架
    SVN的安装与介绍
    easyUI的简单操作
  • 原文地址:https://www.cnblogs.com/cjtcalc/p/13046513.html
Copyright © 2020-2023  润新知