• Bzoj4556: [Tjoi2016&Heoi2016]字符串


    题面

    传送门

    Sol

    二分这个最长前缀的长度
    考虑(check)

    首先(s[a..b])(i)开头子串如果要满足和(s[c..d])(LCP>=mid)
    那么(i)肯定是在后缀数组的(rank)的一个区间内
    这个区间显然可以二分/倍增出来

    (i)同时还要满足(b-i+1>=mid)(i>=a),这也是一个区间
    那么变成了一个二维数点问题
    直接主席树搞一搞就好了

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    template <class Int>
    IL void Input(RG Int &x){
        RG int z = 1; RG char c = getchar(); x = 0;
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        x *= z;
    }
    
    const int maxn(1e5 + 5);
    const int oo(1e9);
    
    int n, sa[maxn], rk[maxn], tmp[maxn], t[maxn], st[20][maxn], lg[maxn], q;
    char s[maxn];
    
    IL int Cmp(RG int i, RG int j, RG int k){
    	return tmp[i] == tmp[j] && tmp[i + k] == tmp[j + k];
    }
    
    IL void SuffixSort(){
    	RG int m = 30;
    	for(RG int i = 1; i <= n; ++i) ++t[rk[i] = s[i] - 'a' + 1];
    	for(RG int i = 1; i <= m; ++i) t[i] += t[i - 1];
    	for(RG int i = n; i; --i) sa[t[rk[i]]--] = i;
    	for(RG int k = 1; k <= n; k <<= 1){
    		RG int l = 0;
    		for(RG int i = n - k + 1; i <= n; ++i) tmp[++l] = i;
    		for(RG int i = 1; i <= n; ++i) if(sa[i] > k) tmp[++l] = sa[i] - k;
    		for(RG int i = 0; i <= m; ++i) t[i] = 0;
    		for(RG int i = 1; i <= n; ++i) ++t[rk[tmp[i]]];
    		for(RG int i = 1; i <= m; ++i) t[i] += t[i - 1];
    		for(RG int i = n; i; --i) sa[t[rk[tmp[i]]]--] = tmp[i];
    		swap(rk, tmp), rk[sa[1]] = l = 1;
    		for(RG int i = 2; i <= n; ++i) rk[sa[i]] = Cmp(sa[i - 1], sa[i], k) ? l : ++l;
    		if(l >= n) break;
    		m = l;
    	}
    	for(RG int i = 1, h = 0; i <= n; ++i){
    		if(h) --h;
    		while(s[i + h] == s[sa[rk[i] - 1] + h]) ++h;
    		st[0][rk[i]] = h;
    	}
    	for(RG int i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1;
    	for(RG int j = 1; j <= lg[n]; ++j)
    		for(RG int i = 1; i + (1 << j) - 1 <= n; ++i)
    			st[j][i] = min(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
    }
    
    IL int LCP(RG int x, RG int y){
    	if(x == y) return oo;
    	if(x > y) swap(x, y);
    	RG int l = lg[y - x];
    	return min(st[l][x + 1], st[l][y - (1 << l) + 1]);
    }
    
    int tot, rt[maxn];
    
    struct HJT{
    	int ls, rs, sum;
    } tree[maxn * 20];
    
    IL void Modify(RG int &x, RG int l, RG int r, RG int p){
    	tree[++tot] = tree[x], ++tree[x = tot].sum;
    	if(l == r) return;
    	RG int mid = (l + r) >> 1;
    	if(p <= mid) Modify(tree[x].ls, l, mid, p);
    	else Modify(tree[x].rs, mid + 1, r, p);
    }
    
    IL int Query(RG int x, RG int y, RG int l, RG int r, RG int ql, RG int qr){
    	if(!(x + y)) return 0;
    	if(ql <= l && qr >= r) return tree[x].sum - tree[y].sum;
    	RG int mid = (l + r) >> 1, ans = 0;
    	if(ql <= mid) ans = Query(tree[x].ls, tree[y].ls, l, mid, ql, qr);
    	if(qr > mid) ans += Query(tree[x].rs, tree[y].rs, mid + 1, r, ql, qr);
    	return ans;
    }
    
    IL int Check(RG int l1, RG int r1, RG int p, RG int len){
    	RG int l = 1, r = p, ql, qr;
    	while(l <= r){
    		RG int mid = (l + r) >> 1;
    		if(LCP(mid, p) >= len) ql = mid, r = mid - 1;
    		else l = mid + 1;
    	}
    	l = p, r = n;
    	while(l <= r){
    		RG int mid = (l + r) >> 1;
    		if(LCP(mid, p) >= len) qr = mid, l = mid + 1;
    		else r = mid - 1;
    	}
    	return Query(rt[qr], rt[ql - 1], 1, n, l1, r1);
    }
    
    int main(RG int argc, RG char* argv[]){
    	Input(n), Input(q), scanf(" %s", s + 1);
    	SuffixSort();
    	for(RG int i = 1; i <= n; ++i) rt[i] = rt[i - 1], Modify(rt[i], 1, n, sa[i]);
    	for(RG int i = 1, a, b, c, d; i <= q; ++i){
    		Input(a), Input(b), Input(c), Input(d);
    		RG int l = 0, r = min(b - a + 1, d - c + 1), ans = 0;
    		while(l <= r){
    			RG int mid = (l + r) >> 1;
    			if(Check(a, b - mid + 1, rk[c], mid)) ans = mid, l = mid + 1;
    			else r = mid - 1;
    		}
    		printf("%d
    ", ans);
    	}
        return 0;
    }
    
  • 相关阅读:
    我终于会手打lct了!
    [模板]Dijkstra-优先队列优化-单源最短路
    99999999海岛帝国后传:算法大会
    正在加载中。。。。。
    【题解】CF1054D Changing Array(异或,贪心)
    【题解】P4550 收集邮票(概率期望,平方期望)
    【题解】CF149D Coloring Brackets(区间 DP,记忆化搜索)
    【笔记】斜率优化 DP
    CSP2021 游记
    【题解】洛谷P1502 窗口的星星
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8795296.html
Copyright © 2020-2023  润新知