• Luogu3768: 简单的数学题


    题面

    传送门

    Sol

    运用提出gcd等莫比乌斯反演的推导技巧得到

    [ans=sum_{d=1}^{n}d^3sum_{i=1}^{lfloorfrac{n}{d} floor}mu(i)*i^2*S(lfloorfrac{n}{d*i} floor)^2 ]

    其中(S(n)=sum_{i=1}^{n}i=frac{n(n+1)}{2})
    (代替d*i)
    (ans=sum_{i=1}^{n}S(lfloorfrac{n}{i} floor)^2 * i^2 sum_{d|i}d*mu(frac{i}{d}))
    然后写线性筛就可以拿到优秀的暴力分

    优化?

    n这么大,想一想杜教筛
    筛的时候发现(sum_{d|i}d*mu(frac{i}{d}))(varphi(d))的筛法一模一样
    好的,那它们两个就相等
    所以就是(sum_{i=1}^{n}S(lfloorfrac{n}{i} floor)^2 * i^2 * varphi(i))
    (S(lfloorfrac{n}{i} floor)^2就分块一下)后面的杜教筛

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(5e6 + 1);
    
    IL ll Read(){
        RG ll x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int prime[_], num, Zsy, phi[_], inv2, inv6, N;
    map <ll, int> Phi;
    bool isprime[_];
    
    IL void Prepare(){
    	isprime[1] = 1; phi[1] = 1;
    	for(RG int i = 2; i < N; ++i){
    		if(!isprime[i]){  prime[++num] = i; phi[i] = (i - 1);  }
    		for(RG int j = 1; j <= num && i * prime[j] < N; ++j){
    			isprime[i * prime[j]] = 1;
    			if(i % prime[j]) phi[i * prime[j]] = 1LL * phi[i] * (prime[j] - 1) % Zsy;
    			else{  phi[i * prime[j]] = 1LL * phi[i] * prime[j] % Zsy; break;  }
    		}
    	}
    	for(RG int i = 2; i < N; ++i) phi[i] = 1LL * phi[i] * i % Zsy * i % Zsy, (phi[i] += phi[i - 1]) %= Zsy;
    }
    
    IL ll Pow(RG ll x, RG ll y){
    	RG ll ret = 1;
    	for(; y; x = x * x % Zsy, y >>= 1) if(y & 1) ret = ret * x % Zsy;
    	return ret;
    }
    
    IL ll Ssqr(RG ll x){  return x % Zsy * (x + 1) % Zsy * (2 * x % Zsy + 1) % Zsy * inv6 % Zsy;  }
    
    IL ll Sumphi(RG ll n){
    	if(n < N) return phi[n];
    	if(Phi[n]) return Phi[n];
    	RG ll ans = n % Zsy * (n + 1) % Zsy * inv2 % Zsy; ans = ans * ans % Zsy;
    	for(RG ll i = 2, j; i <= n; i = j + 1){
    		j = n / (n / i);
    		ans -= (Ssqr(j) - Ssqr(i - 1)) * Sumphi(n / i) % Zsy;
    		ans = (ans + Zsy) % Zsy;
    	}
    	return Phi[n] = ans;
    }
    
    int main(RG int argc, RG char* argv[]){
    	Zsy = Read(); RG ll n = Read(); N = min(1LL * _, n + 1); Prepare();
    	inv2 = Pow(2, Zsy - 2); inv6 = Pow(6, Zsy - 2);
    	RG ll ans = 0, s;
    	for(RG ll i = 1, j; i <= n; i = j + 1){
    		j = n / (n / i);
    		s = (n / i) % Zsy * (n / i + 1) % Zsy * inv2 % Zsy;
    		s = s * s % Zsy;
    		ans += s * (Sumphi(j) - Sumphi(i - 1)) % Zsy;
    		ans = (ans + Zsy) % Zsy;
    	}
    	printf("%lld
    ", ans);
        return 0;
    }
    
    
  • 相关阅读:
    UVALive 7276 Wooden Signs
    hdu4291 A Short problem
    A
    hdu4686 Arc of Dream
    thinkphp5 模型的 更新操作
    thinkphp5 模型的 新增操作
    thinkphp 模型的创建
    thinkphp5 增删改查操作
    tp5 的查询构造器
    thinkphp5 数据库的原生查询
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8299110.html
Copyright © 2020-2023  润新知