vjudge 首先显然要建立圆方树 对于每一种点建立虚树,考虑这一种点贡献,对于虚树上已经有的点就直接算 否则对虚树上的一条边 ((u, v)),(u) 为父亲,假设上面连通块大小为 (x),下面为 (y) 切断 ((u, v)) 之间的点(不包括 (u))都会有 (x imes y) 的贡献,差分一下贡献即可
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace IO {
const int maxn(1 << 21 | 1);
char ibuf[maxn], obuf[maxn], *iS, *iT, *oS = obuf, *oT = obuf + maxn - 1, c, st[66];
int tp, f;
inline char Getc() {
return iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++;
}
template <class Int> inline void In(Int &x) {
for (f = 1, c = Getc(); c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c >= '0' && c <= '9'; c = Getc()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
inline void Flush() {
fwrite(obuf, 1, oS - obuf, stdout);
oS = obuf;
}
inline void Putc(char c) {
*oS++ = c;
if (oS == oT) Flush();
}
template <class Int> void Out(Int x) {
if (!x) Putc('0');
if (x < 0) Putc('-'), x = -x;
while (x) st[++tp] = x % 10 + '0', x /= 10;
while (tp) Putc(st[tp--]);
}
}
using IO :: In;
using IO :: Out;
using IO :: Putc;
using IO :: Flush;
const int maxn(4e5 + 5);
int n, m, g[maxn], size[maxn], son[maxn], fa[maxn], top[maxn], tot, d[maxn], f[maxn], ng;
int dfn[maxn], low[maxn], st[maxn], tp, idx, deep[maxn], id[maxn], cnt, sz, nsz, dsu[maxn];
vector <int> e1[maxn], e2[maxn], e3[maxn], team[maxn * 3];
ll ans[maxn], cv[maxn], add;
inline void Add1(int u, int v) {
e1[u].push_back(v), e1[v].push_back(u);
}
inline void Add2(int u, int v) {
e2[u].push_back(v), e2[v].push_back(u);
}
inline void Add3(int u, int v) {
e3[u].push_back(v), ++d[v];
}
void Tarjan(int u) {
int cur;
dfn[u] = low[u] = ++idx, st[++tp] = u;
for (auto v : e1[u])
if (!dfn[v]) {
Tarjan(v), low[u] = min(low[u], low[v]);
if (low[v] >= dfn[u]) {
++tot;
do {
cur = st[tp--], Add2(cur, tot);
} while (cur ^ v);
Add2(u, tot);
}
}
else low[u] = min(low[u], dfn[v]);
}
void Dfs1(int u, int ff) {
size[u] = 1;
for (auto v : e2[u])
if (v ^ ff) {
deep[v] = deep[u] + 1, fa[v] = u;
Dfs1(v, u), size[u] += size[v];
son[u] = size[v] > size[son[u]] ? v : son[u];
}
}
void Dfs2(int u, int tp) {
top[u] = tp, dfn[u] = ++idx;
if (son[u]) Dfs2(son[u], tp);
for (auto v : e2[u]) if (!top[v]) Dfs2(v, v);
}
inline int Find(int x) {
return (dsu[x] ^ x) ? dsu[x] = Find(dsu[x]) : x;
}
inline int Cmp(int x, int y) {
return dfn[x] < dfn[y];
}
inline int LCA(int u, int v) {
while (top[u] ^ top[v]) deep[top[u]] > deep[top[v]] ? u = fa[top[u]] : v = fa[top[v]];
return deep[u] < deep[v] ? u : v;
}
void Getsz(int u) {
if (g[u] == ng) ++nsz;
for (auto v : e3[u]) Getsz(v);
}
void Calc(int u) {
if (g[u] == ng) f[u] = 1;
for (auto v : e3[u]) Calc(v), ans[u] += (ll)f[u] * f[v], f[u] += f[v];
for (auto v : e3[u]) cv[v] += (ll)(nsz - f[v]) * f[v], cv[u] -= (ll)(nsz - f[v]) * f[v];
}
void Solve(int u, int ff) {
for (auto v : e2[u]) if (v ^ ff) Solve(v, u), cv[u] += cv[v];
ans[u] += cv[u];
}
int main() {
int i, j, u, v, l;
In(n), In(m), tot = n;
for (i = 1; i <= n; ++i) In(g[i]), team[g[i]].push_back(i), dsu[i] = i;
for (i = 1; i <= m; ++i) {
In(u), In(v), Add1(u, v);
if (Find(u) ^ Find(v)) dsu[Find(u)] = Find(v);
}
for (i = 1; i <= n; ++i) if (!dfn[i]) Tarjan(i);
for (idx = 0, i = 1; i <= tot; ++i) if (!size[i]) Dfs1(i, 0), Dfs2(i, i);
for (i = 1; i <= 1000000; ++i)
if (l = team[i].size()) {
for (cnt = j = 0; j < l; ++j) id[++cnt] = team[i][j];
sort(id + 1, id + cnt + 1, Cmp);
for (j = 1; j < l; ++j) if (Find(id[j]) == Find(id[j + 1]))id[++cnt] = LCA(id[j], id[j + 1]);
sort(id + 1, id + cnt + 1, Cmp), cnt = unique(id + 1, id + cnt + 1) - id - 1;
for (j = 1; j <= cnt; ++j) e3[id[j]].clear(), f[id[j]] = d[id[j]] = 0;
sz = tp = 0, ng = i;
for (j = 1; j <= cnt; ++j) {
while (tp && dfn[st[tp]] + size[st[tp]] <= dfn[id[j]]) --tp;
if (tp) Add3(st[tp], id[j]);
st[++tp] = id[j];
}
for (j = 1; j <= cnt; ++j)
if (!d[id[j]]) nsz = 0, Getsz(id[j]), Calc(id[j]), add += (ll)sz * nsz, sz += nsz;
}
for (i = 1; i <= tot; ++i) if (!fa[i]) Solve(i, 0);
for (i = 1; i <= n; ++i) Out(ans[i] + add), Putc('
');
return Flush(), 0;
}