• Nodejs进阶:crypto模块中你需要掌握的安全基础知识


    一、 文章概述

    互联网时代,网络上的数据量每天都在以惊人的速度增长。同时,各类网络安全问题层出不穷。在信息安全重要性日益凸显的今天,作为一名开发者,需要加强对安全的认识,并通过技术手段增强服务的安全性。

    crypto模块是nodejs的核心模块之一,它提供了安全相关的功能,如摘要运算、加密、电子签名等。很多初学者对着长长的API列表,不知如何上手,因此它背后涉及了大量安全领域的知识。

    本文重点讲解API背后的理论知识,主要包括如下内容:

    1. 摘要(hash)、基于摘要的消息验证码(HMAC)
    2. 对称加密、非对称加密、电子签名
    3. 分组加密模式

    二、摘要(hash)

    摘要(digest):将长度不固定的消息作为输入,通过运行hash函数,生成固定长度的输出,这段输出就叫做摘要。通常用来验证消息完整、未被篡改。

    摘要运算是不可逆的。也就是说,输入固定的情况下,产生固定的输出。但知道输出的情况下,无法反推出输入。

    伪代码如下。

    digest = Hash(message)

    常见的摘要算法 与 对应的输出位数如下:

    • MD5:128位
    • SHA-1:160位
    • SHA256 :256位
    • SHA512:512位

    nodejs中的例子:

    var crypto = require('crypto');
    var md5 = crypto.createHash('md5');
    
    var message = 'hello';
    var digest = md5.update(message, 'utf8').digest('hex');	
    
    console.log(digest);
    // 输出如下:注意这里是16进制
    // 5d41402abc4b2a76b9719d911017c592
    

    备注:在各类文章或文献中,摘要、hash、散列 这几个词经常会混用,导致不少初学者看了一脸懵逼,其实大部分时候指的都是一回事,记住上面对摘要的定义就好了。

    三、MAC、HMAC

    MAC(Message Authentication Code):消息认证码,用以保证数据的完整性。运算结果取决于消息本身、秘钥。

    MAC可以有多种不同的实现方式,比如HMAC。

    HMAC(Hash-based Message Authentication Code):可以粗略地理解为带秘钥的hash函数。

    nodejs例子如下:

    const crypto = require('crypto');
    
    // 参数一:摘要函数
    // 参数二:秘钥
    let hmac = crypto.createHmac('md5', '123456');
    let ret = hmac.update('hello').digest('hex');
    
    console.log(ret);
    // 9c699d7af73a49247a239cb0dd2f8139
    

    四、对称加密、非对称加密

    加密/解密:给定明文,通过一定的算法,产生加密后的密文,这个过程叫加密。反过来就是解密。

    encryptedText = encrypt( plainText )
    plainText = decrypt( encryptedText )

    秘钥:为了进一步增强加/解密算法的安全性,在加/解密的过程中引入了秘钥。秘钥可以视为加/解密算法的参数,在已知密文的情况下,如果不知道解密所用的秘钥,则无法将密文解开。

    encryptedText = encrypt(plainText, encryptKey)
    plainText = decrypt(encryptedText, decryptKey)

    根据加密、解密所用的秘钥是否相同,可以将加密算法分为对称加密非对称加密

    1、对称加密

    加密、解密所用的秘钥是相同的,即encryptKey === decryptKey

    常见的对称加密算法:DES、3DES、AES、Blowfish、RC5、IDEA。

    加、解密伪代码:

    encryptedText = encrypt(plainText, key); // 加密
    plainText = decrypt(encryptedText, key); // 解密

    2、非对称加密

    又称公开秘钥加密。加密、解密所用的秘钥是不同的,即encryptKey !== decryptKey

    加密秘钥公开,称为公钥。解密秘钥保密,称为秘钥。

    常见的非对称加密算法:RSA、DSA、ElGamal。

    加、解密伪代码:

    encryptedText = encrypt(plainText, publicKey); // 加密
    plainText = decrypt(encryptedText, priviteKey); // 解密

    3、对比与应用

    除了秘钥的差异,还有运算速度上的差异。通常来说:

    1. 对称加密速度要快于非对称加密。
    2. 非对称加密通常用于加密短文本,对称加密通常用于加密长文本。

    两者可以结合起来使用,比如HTTPS协议,可以在握手阶段,通过RSA来交换生成对称秘钥。在之后的通讯阶段,可以使用对称加密算法对数据进行加密,秘钥则是握手阶段生成的。

    备注:对称秘钥交换不一定通过RSA,还可以通过类似DH来完成,这里不展开。

    五、数字签名

    签名大致可以猜到数字签名的用途。主要作用如下:

    1. 确认信息来源于特定的主体。
    2. 确认信息完整、未被篡改。

    为了达到上述目的,需要有两个过程:

    1. 发送方:生成签名。
    2. 接收方:验证签名。

    1、发送方生成签名

    1. 计算原始信息的摘要。
    2. 通过私钥对摘要进行签名,得到电子签名。
    3. 将原始信息、电子签名,发送给接收方。

    附:签名伪代码

    digest = hash(message); // 计算摘要
    digitalSignature = sign(digest, priviteKey); // 计算数字签名

    2、接收方验证签名

    1. 通过公钥解开电子签名,得到摘要D1。(如果解不开,信息来源主体校验失败)
    2. 计算原始信息的摘要D2。
    3. 对比D1、D2,如果D1等于D2,说明原始信息完整、未被篡改。

    附:签名验证伪代码

    digest1 = verify(digitalSignature, publicKey); // 获取摘要
    digest2 = hash(message); // 计算原始信息的摘要
    digest1 === digest2 // 验证是否相等

    3、对比非对称加密

    由于RSA算法的特殊性,加密/解密、签名/验证 看上去特别像,很多同学都很容易混淆。先记住下面结论,后面有时间再详细介绍。

    1. 加密/解密:公钥加密,私钥解密。
    2. 签名/验证:私钥签名,公钥验证。

    六、分组加密模式、填充、初始化向量

    常见的对称加密算法,如AES、DES都采用了分组加密模式。这其中,有三个关键的概念需要掌握:模式、填充、初始化向量。

    搞清楚这三点,才会知道crypto模块对称加密API的参数代表什么含义,出了错知道如何去排查。

    1、分组加密模式

    所谓的分组加密,就是将(较长的)明文拆分成固定长度的块,然后对拆分的块按照特定的模式进行加密。

    常见的分组加密模式有:ECB(不安全)、CBC(最常用)、CFB、OFB、CTR等。

    以最简单的ECB为例,先将消息拆分成等分的模块,然后利用秘钥进行加密。

    图片来源:这里,更多关于分组加密模式的介绍可以参考 wiki

    后面假设每个块的长度为128位

    2、初始化向量:IV

    为了增强算法的安全性,部分分组加密模式(CFB、OFB、CTR)中引入了初始化向量(IV),使得加密的结果随机化。也就是说,对于同一段明文,IV不同,加密的结果不同。

    以CBC为例,每一个数据块,都与前一个加密块进行亦或运算后,再进行加密。对于第一个数据块,则是与IV进行亦或。

    IV的大小跟数据块的大小有关(128位),跟秘钥的长度无关。

    如图所示,图片来源 这里

    3、填充:padding

    分组加密模式需要对长度固定的块进行加密。分组拆分完后,最后一个数据块长度可能小于128位,此时需要进行填充以满足长度要求。

    填充方式有多重。常见的填充方式有PKCS7

    假设分组长度为k字节,最后一个分组长度为k-last,可以看到:

    1. 不管明文长度是多少,加密之前都会会对明文进行填充 (不然解密函数无法区分最后一个分组是否被填充了,因为存在最后一个分组长度刚好等于k的情况)
    2. 如果最后一个分组长度等于k-last === k,那么填充内容为一个完整的分组 k k k ... k (k个字节)
    3. 如果最后一个分组长度小于k-last < k,那么填充内容为 k-last mod k
                         01 -- if lth mod k = k-1
                      02 02 -- if lth mod k = k-2
                          .
                          .
                          .
                k k ... k k -- if lth mod k = 0
    

    概括来说

    1. 分组加密:先将明文切分成固定长度的块(128位),再进行加密。
    2. 分组加密的几种模式:ECB(不安全)、CBC(最常用)、CFB、OFB、CTR。
    3. 填充(padding):部分加密模式,当最后一个块的长度小于128位时,需要通过特定的方式进行填充。(ECB、CBC需要填充,CFB、OFB、CTR不需要填充)
    4. 初始化向量(IV):部分加密模式(CFB、OFB、CTR)会将 明文块 与 前一个密文块进行亦或操作。对于第一个明文块,不存在前一个密文块,因此需要提供初始化向量IV(把IV当做第一个明文块 之前的 密文块)。此外,IV也可以让加密结果随机化。

    七、写在后面

    crypto模块涉及的安全知识较多,篇幅所限,这里没办法一一展开。为了讲解方便,部分内容可能不够严谨,如有错漏敬请指出。

    有疑问或感兴趣的同学欢迎留言交流,也可留意我的github关注最新内容更新《nodejs-learning-guide》

    八、相关链接

    Nodejs学习笔记

    Cryptographic hash function

    Hash-based message authentication code

    HMAC vs MAC functions

    What is the difference between MAC and HMAC?

    Block cipher mode of operation

    RSA的公钥和私钥到底哪个才是用来加密和哪个用来解密? - 刘巍然-学酥的回答 - 知乎

  • 相关阅读:
    Mysql设置字段唯一,值唯一方式
    在tomcat中模块化部署项目
    优化Eclipse
    akka 服务的搭建
    ES6中的let和var区别
    jquery,$,选择器,正则表达式
    jsp页面用java代码取随机数
    为什么要做权限管理
    将字符串编码成数值,求数值最大和问题
    Cookie与Session的区别
  • 原文地址:https://www.cnblogs.com/chyingp/p/nodejs-learning-crypto-theory.html
Copyright © 2020-2023  润新知