• POJ 1149 PIGS


    Description

    Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 
    All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
    More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 
    An unlimited number of pigs can be placed in every pig-house. 
    Write a program that will find the maximum number of pigs that he can sell on that day.

    Input

    The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
    The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
    The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
    A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

    Output

    The first and only line of the output should contain the number of sold pigs.

    Sample Input

    3 3
    3 1 10
    2 1 2 2
    2 1 3 3
    1 2 6

    Sample Output

    7

    Source

     
    题解:赤裸裸的网络流分配问题。直接建模好了,于是我们就得到了这张图:
     
    然后我们发现一共有100000个节点,又不是平面图,咱们就是上最快的外国大佬的O(NM)的网络流套LCT也跑不过啊= =
    那么我们要缩点了,缩点时遵循以下三条原则:
    那么我们来缩点,首先最后没有开的房子(也就是红色的节点)不用建,其次蓝色的四个节点可以缩成一个点。
    然后后面的好多房子也可以各种缩点。。。然后图就变成这个德行了:
     
    新的建图规则可以总结一下:
     
    然后水过就好= =
     
      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cmath>
      4 #include<algorithm>
      5 #include<cstring>
      6 #include<queue>
      7 #define inf 0x3f3f3f3f
      8 using namespace std;
      9 const int maxn=100+10,maxm=1000+10,maxe=200000+10;
     10 int n,m,S,T;
     11 int cus[maxm][maxn],pig[maxm],buy[maxn],num[maxm];
     12 struct Tedge{int x,y,flow,cap,next;};
     13 struct Dinic{
     14     Tedge adj[maxe];int fch[maxn],ms;
     15     int n,m,S,T,d[maxn],cur[maxn];bool vis[maxn];
     16     void init(int n){
     17         this->n=n;
     18         ms=0;
     19         memset(fch,-1,sizeof(fch));
     20         return;
     21     }
     22     void AddEdge(int a,int b,int c){
     23         adj[ms]=(Tedge){a,b,0,c,fch[a]};fch[a]=ms++;
     24         adj[ms]=(Tedge){b,a,0,0,fch[b]};fch[b]=ms++;
     25         return;
     26     }
     27     bool BFS(){
     28         memset(vis,false,sizeof(vis));
     29         queue<int>Q;Q.push(S);vis[S]=true;d[S]=0;
     30         while(!Q.empty()){
     31             int u=Q.front();Q.pop();
     32             for(int i=fch[u];i!=-1;i=adj[i].next){
     33                 int v=adj[i].y;
     34                 if(!vis[v]&&adj[i].cap>adj[i].flow){
     35                     vis[v]=true;
     36                     d[v]=1+d[u];
     37                     Q.push(v);
     38                 }
     39             }
     40         } return vis[T];
     41     }
     42     int DFS(int u,int a){
     43         if(u==T||!a) return a;
     44         int flow=0,f;
     45         for(int& i=cur[u];i!=-1;i=adj[i].next){
     46             int v=adj[i].y;
     47             if(d[v]==d[u]+1&&(f=DFS(v,min(a,adj[i].cap-adj[i].flow)))>0){
     48                 flow+=f;
     49                 a-=f;
     50                 adj[i].flow+=f;
     51                 adj[i^1].flow-=f;
     52                 if(!a) break;
     53             }
     54         } return flow;
     55     }
     56     int MaxFlow(int S,int T){
     57         this->T=T;this->S=S;
     58         int flow=0;
     59         while(BFS()){
     60             for(int i=0;i<n;i++) cur[i]=fch[i];
     61             flow+=DFS(S,inf);
     62         } return flow;
     63     }
     64 }sol;
     65 inline int read(){
     66     int x=0,sig=1;char ch=getchar();
     67     while(!isdigit(ch)){if(ch=='-') sig=-1;ch=getchar();}
     68     while(isdigit(ch)) x=10*x+ch-'0',ch=getchar();
     69     return x*=sig;
     70 }
     71 inline void write(int x){
     72     if(x==0){putchar('0');return;} if(x<0) putchar('-'),x=-x;
     73     int len=0,buf[15]; while(x) buf[len++]=x%10,x/=10;
     74     for(int i=len-1;i>=0;i--) putchar(buf[i]+'0');return;
     75 }
     76 void init(){
     77     m=read();n=read();
     78     for(int i=0;i<m;i++) pig[i]=read();
     79     for(int i=0;i<n;i++){
     80         int a=read(),b;
     81         for(int j=0;j<a;j++){
     82             b=read();
     83             b--;
     84             cus[b][num[b]++]=i;
     85         }
     86         buy[i]=read();
     87     }
     88     return;
     89 }
     90 void work(){
     91     
     92     return;
     93 }
     94 void print(){
     95     S=n;T=n+1;
     96     sol.init(n+2);
     97     for(int i=0;i<n;i++) sol.AddEdge(i,T,buy[i]);
     98     for(int i=0;i<m;i++){
     99         if(num[i]>0) sol.AddEdge(S,cus[i][0],pig[i]);
    100         for(int j=1;j<num[i];j++) sol.AddEdge(cus[i][j-1],cus[i][j],inf);
    101     }
    102     write(sol.MaxFlow(S,T));
    103     return;
    104 }
    105 int main(){
    106     init();work();print();return 0;
    107 }
  • 相关阅读:
    px和rem换算
    使用Android Studio创建Android项目
    Hopscotch
    AtCoder Grand Contest 010 --C:Cleaning
    Hello world!
    概率生成函数
    FFT 学习笔记
    扩展中国剩余定理(excrt)
    组合恒等式
    常见数列
  • 原文地址:https://www.cnblogs.com/chxer/p/4439772.html
Copyright © 2020-2023  润新知