Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
Source
题解:赤裸裸的网络流分配问题。直接建模好了,于是我们就得到了这张图:
然后我们发现一共有100000个节点,又不是平面图,咱们就是上最快的外国大佬的O(NM)的网络流套LCT也跑不过啊= =
那么我们要缩点了,缩点时遵循以下三条原则:
那么我们来缩点,首先最后没有开的房子(也就是红色的节点)不用建,其次蓝色的四个节点可以缩成一个点。
然后后面的好多房子也可以各种缩点。。。然后图就变成这个德行了:
新的建图规则可以总结一下:
然后水过就好= =
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<algorithm> 5 #include<cstring> 6 #include<queue> 7 #define inf 0x3f3f3f3f 8 using namespace std; 9 const int maxn=100+10,maxm=1000+10,maxe=200000+10; 10 int n,m,S,T; 11 int cus[maxm][maxn],pig[maxm],buy[maxn],num[maxm]; 12 struct Tedge{int x,y,flow,cap,next;}; 13 struct Dinic{ 14 Tedge adj[maxe];int fch[maxn],ms; 15 int n,m,S,T,d[maxn],cur[maxn];bool vis[maxn]; 16 void init(int n){ 17 this->n=n; 18 ms=0; 19 memset(fch,-1,sizeof(fch)); 20 return; 21 } 22 void AddEdge(int a,int b,int c){ 23 adj[ms]=(Tedge){a,b,0,c,fch[a]};fch[a]=ms++; 24 adj[ms]=(Tedge){b,a,0,0,fch[b]};fch[b]=ms++; 25 return; 26 } 27 bool BFS(){ 28 memset(vis,false,sizeof(vis)); 29 queue<int>Q;Q.push(S);vis[S]=true;d[S]=0; 30 while(!Q.empty()){ 31 int u=Q.front();Q.pop(); 32 for(int i=fch[u];i!=-1;i=adj[i].next){ 33 int v=adj[i].y; 34 if(!vis[v]&&adj[i].cap>adj[i].flow){ 35 vis[v]=true; 36 d[v]=1+d[u]; 37 Q.push(v); 38 } 39 } 40 } return vis[T]; 41 } 42 int DFS(int u,int a){ 43 if(u==T||!a) return a; 44 int flow=0,f; 45 for(int& i=cur[u];i!=-1;i=adj[i].next){ 46 int v=adj[i].y; 47 if(d[v]==d[u]+1&&(f=DFS(v,min(a,adj[i].cap-adj[i].flow)))>0){ 48 flow+=f; 49 a-=f; 50 adj[i].flow+=f; 51 adj[i^1].flow-=f; 52 if(!a) break; 53 } 54 } return flow; 55 } 56 int MaxFlow(int S,int T){ 57 this->T=T;this->S=S; 58 int flow=0; 59 while(BFS()){ 60 for(int i=0;i<n;i++) cur[i]=fch[i]; 61 flow+=DFS(S,inf); 62 } return flow; 63 } 64 }sol; 65 inline int read(){ 66 int x=0,sig=1;char ch=getchar(); 67 while(!isdigit(ch)){if(ch=='-') sig=-1;ch=getchar();} 68 while(isdigit(ch)) x=10*x+ch-'0',ch=getchar(); 69 return x*=sig; 70 } 71 inline void write(int x){ 72 if(x==0){putchar('0');return;} if(x<0) putchar('-'),x=-x; 73 int len=0,buf[15]; while(x) buf[len++]=x%10,x/=10; 74 for(int i=len-1;i>=0;i--) putchar(buf[i]+'0');return; 75 } 76 void init(){ 77 m=read();n=read(); 78 for(int i=0;i<m;i++) pig[i]=read(); 79 for(int i=0;i<n;i++){ 80 int a=read(),b; 81 for(int j=0;j<a;j++){ 82 b=read(); 83 b--; 84 cus[b][num[b]++]=i; 85 } 86 buy[i]=read(); 87 } 88 return; 89 } 90 void work(){ 91 92 return; 93 } 94 void print(){ 95 S=n;T=n+1; 96 sol.init(n+2); 97 for(int i=0;i<n;i++) sol.AddEdge(i,T,buy[i]); 98 for(int i=0;i<m;i++){ 99 if(num[i]>0) sol.AddEdge(S,cus[i][0],pig[i]); 100 for(int j=1;j<num[i];j++) sol.AddEdge(cus[i][j-1],cus[i][j],inf); 101 } 102 write(sol.MaxFlow(S,T)); 103 return; 104 } 105 int main(){ 106 init();work();print();return 0; 107 }