• Jzzhu and Cities


    CF #257 div2D:http://codeforces.com/contest/450/problem/D

    题意:给你n个城市,m条无向有权边。另外还有k条边,每条边从起到到i。求可以删除这k条边中的多少条,使得每个点到1的最短距离不变。

    题解:通过这一题明白了,对于一个问题要有分析思考的能力。首先分析一下,对于城市i,(1)如果没有从1到i的特殊边(即上述k条中的一条),我们不用考虑。(2)如果有,在这之前已经求出了每个点的最短路,如果这条边的边权大于等于最短路,则可以直接删除,一不会影响本身的最短路,二不会影响别的城市,因为别的城市可以通过当前已经求得的最短路进行松弛。(3)如果这个边权边权小于最短路,那么我们把最短路路径修改为这个距离,接下就要判断,能否通过其它的点来求得当前的最短路或者更短,很明显,如果能够求得到这个距离,说明可以通过其它点来得到这个最短路,那么这一条路径可以删除了,否则就是唯一的。对于这一来说,如果用链式前向星来存图的话,我的是T了,也许是哪里没有处理好,改成Vecotr就A了。这确实是不错的题目。

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<algorithm>
      4 #include<cstring>
      5 #include<queue>
      6 #include<vector>
      7 #define INF 10000000000000000LL
      8 #define ll long long
      9 using namespace std;
     10 const int N=1e5+4;
     11 const int M=3*1e5+4;
     12 int n,m,k,ans,u,v;
     13 long long temp,dist1[N],dist2[N],dist3[N];
     14 bool flag[N],visit[N];
     15 struct Edge{
     16   int v;
     17   ll w;
     18   Edge(int vi, ll wi) : v(vi), w(wi){}
     19   Edge(){}
     20 };
     21 vector<Edge>G[N];
     22 void SPFA1(int u){
     23     for(int i=1;i<=n;i++){
     24        dist1[i]=INF;
     25        visit[i]=0;
     26       }
     27      queue<int>Q;
     28      dist1[u]=0;
     29      visit[u]=1;
     30      Q.push(u);
     31      while(!Q.empty()){
     32         int v=Q.front();
     33         Q.pop();
     34         visit[v]=0;
     35       for (int i = 0; i < G[v].size(); i++){
     36       int d = G[v][i].v; ll w = G[v][i].w;
     37             if(dist1[d]>dist1[v]+w){
     38                 dist1[d]=dist1[v]+w;
     39                 if(!visit[d]){
     40                     Q.push(d);
     41                     visit[d]=1;
     42                 }
     43             }
     44         }
     45      }
     46 }
     47 void SPFA2(int u){
     48     for(int i=1;i<=n;i++){
     49          visit[i]=0;
     50          dist3[i]=INF;
     51     }
     52      queue<int>Q;
     53      dist3[u]=0;
     54      visit[u]=1;
     55      Q.push(u);
     56      for(int i=1;i<=n;i++){
     57         if(dist2[i]<dist1[i]){
     58             Q.push(i);
     59             visit[i]=1;
     60             dist3[i]=dist2[i];
     61         }
     62      }
     63      while(!Q.empty()){
     64         int v=Q.front();
     65         Q.pop();
     66         visit[v]=0;
     67        for (int i = 0; i < G[v].size(); i++){
     68       int d = G[v][i].v; ll w = G[v][i].w;
     69             if(dist3[d]>dist3[v]+w){
     70                 dist3[d]=dist3[v]+w;
     71                 if(!visit[d]){
     72                     Q.push(d);
     73                     visit[d]=1;
     74                 }
     75                 if(flag[d]){
     76                     ans++;
     77                     flag[d]=0;
     78                 }
     79             }
     80             else if(dist3[d]==dist3[v]+w){
     81                 if(flag[d]){
     82                     ans++;
     83                     flag[d]=0;
     84                 }
     85             }
     86         }
     87      }
     88 }
     89 int main(){
     90    while(~scanf("%d%d%d",&n,&m,&k)){
     91       for (int i = 0; i <= n; i++) G[i].clear();
     92       for(int i=1;i<=m;i++){
     93         scanf("%d%d%I64d",&u,&v,&temp);
     94         G[u].push_back(Edge(v,temp));
     95         G[v].push_back(Edge(u,temp));
     96       }
     97       SPFA1(1);
     98       ans=0;memset(flag,0,sizeof(flag));
     99       for(int i=1;i<=n;i++)
    100         dist2[i]=dist1[i];
    101       for(int i=1;i<=k;i++){
    102         scanf("%d%I64d",&v,&temp);
    103         if(dist2[v]<=temp)ans++;
    104         else{
    105             dist2[v]=temp;
    106             if(flag[v])ans++;
    107              flag[v]=1;
    108         }
    109       }
    110         SPFA2(1);
    111         printf("%d
    ",ans);
    112    }
    113 }
    View Code
  • 相关阅读:
    CopyOnWriteArrayList分析
    java锁和同步
    线程池原理
    Hadoop1的安装
    Hadoop2的HA安装(high availability):JournalNode+ zookeeper
    Hadoop2的HA安装(high availability):nfs+zookeeper
    Hadoop2的FN安装(federated namespace)
    Redis 基础知识
    mycat
    GitFlow及项目工作流程
  • 原文地址:https://www.cnblogs.com/chujian123/p/3856316.html
Copyright © 2020-2023  润新知