• NIST Special Publication 800-63: Digital Identity Guidelines Frequently Asked Questions


    https://pages.nist.gov/800-63-FAQ/#q-b05

    Q-B05:Is password expiration no longer recommended?A-B05:

    SP 800-63B Section 5.1.1.2 paragraph 9 states:

    “Verifiers SHOULD NOT require memorized secrets to be changed arbitrarily (e.g., periodically). However, verifiers SHALL force a change if there is evidence of compromise of the authenticator.”

    Users tend to choose weaker memorized secrets when they know that they will have to change them in the near future. When those changes do occur, they often select a secret that is similar to their old memorized secret by applying a set of common transformations such as increasing a number in the password. This practice provides a false sense of security if any of the previous secrets has been compromised since attackers can apply these same common transformations. But if there is evidence that the memorized secret has been compromised, such as by a breach of the verifier’s hashed password database or observed fraudulent activity, subscribers should be required to change their memorized secrets. However, this event-based change should occur rarely, so that they are less motivated to choose a weak secret with the knowledge that it will only be used for a limited period of time.

    https://pages.nist.gov/800-63-3/sp800-63b.html#memsecretver

    5.1.1.2 Memorized Secret Verifiers

    Verifiers SHALL require subscriber-chosen memorized secrets to be at least 8 characters in length. Verifiers SHOULD permit subscriber-chosen memorized secrets at least 64 characters in length. All printing ASCII [RFC 20] characters as well as the space character SHOULD be acceptable in memorized secrets. Unicode [ISO/ISC 10646] characters SHOULD be accepted as well. To make allowances for likely mistyping, verifiers MAY replace multiple consecutive space characters with a single space character prior to verification, provided that the result is at least 8 characters in length. Truncation of the secret SHALL NOT be performed. For purposes of the above length requirements, each Unicode code point SHALL be counted as a single character.

    If Unicode characters are accepted in memorized secrets, the verifier SHOULD apply the Normalization Process for Stabilized Strings using either the NFKC or NFKD normalization defined in Section 12.1 of Unicode Standard Annex 15 [UAX 15]. This process is applied before hashing the byte string representing the memorized secret. Subscribers choosing memorized secrets containing Unicode characters SHOULD be advised that some characters may be represented differently by some endpoints, which can affect their ability to authenticate successfully.

    Memorized secrets that are randomly chosen by the CSP (e.g., at enrollment) or by the verifier (e.g., when a user requests a new PIN) SHALL be at least 6 characters in length and SHALL be generated using an approved random bit generator [SP 800-90Ar1].

    Memorized secret verifiers SHALL NOT permit the subscriber to store a “hint” that is accessible to an unauthenticated claimant. Verifiers SHALL NOT prompt subscribers to use specific types of information (e.g., “What was the name of your first pet?”) when choosing memorized secrets.

    When processing requests to establish and change memorized secrets, verifiers SHALL compare the prospective secrets against a list that contains values known to be commonly-used, expected, or compromised. For example, the list MAY include, but is not limited to:

    • Passwords obtained from previous breach corpuses.
    • Dictionary words.
    • Repetitive or sequential characters (e.g. ‘aaaaaa’, ‘1234abcd’).
    • Context-specific words, such as the name of the service, the username, and derivatives thereof.

    If the chosen secret is found in the list, the CSP or verifier SHALL advise the subscriber that they need to select a different secret, SHALL provide the reason for rejection, and SHALL require the subscriber to choose a different value.

    Verifiers SHOULD offer guidance to the subscriber, such as a password-strength meter [Meters], to assist the user in choosing a strong memorized secret. This is particularly important following the rejection of a memorized secret on the above list as it discourages trivial modification of listed (and likely very weak) memorized secrets [Blacklists].

    Verifiers SHALL implement a rate-limiting mechanism that effectively limits the number of failed authentication attempts that can be made on the subscriber’s account as described in Section 5.2.2.

    Verifiers SHOULD NOT impose other composition rules (e.g., requiring mixtures of different character types or prohibiting consecutively repeated characters) for memorized secrets. Verifiers SHOULD NOT require memorized secrets to be changed arbitrarily (e.g., periodically). However, verifiers SHALL force a change if there is evidence of compromise of the authenticator.

    Verifiers SHOULD permit claimants to use “paste” functionality when entering a memorized secret. This facilitates the use of password managers, which are widely used and in many cases increase the likelihood that users will choose stronger memorized secrets.

    In order to assist the claimant in successfully entering a memorized secret, the verifier SHOULD offer an option to display the secret — rather than a series of dots or asterisks — until it is entered. This allows the claimant to verify their entry if they are in a location where their screen is unlikely to be observed. The verifier MAY also permit the user’s device to display individual entered characters for a short time after each character is typed to verify correct entry. This is particularly applicable on mobile devices.

    The verifier SHALL use approved encryption and an authenticated protected channel when requesting memorized secrets in order to provide resistance to eavesdropping and MitM attacks.

    Verifiers SHALL store memorized secrets in a form that is resistant to offline attacks. Memorized secrets SHALL be salted and hashed using a suitable one-way key derivation function. Key derivation functions take a password, a salt, and a cost factor as inputs then generate a password hash. Their purpose is to make each password guessing trial by an attacker who has obtained a password hash file expensive and therefore the cost of a guessing attack high or prohibitive. Examples of suitable key derivation functions include Password-based Key Derivation Function 2 (PBKDF2) [SP 800-132] and Balloon [BALLOON]. A memory-hard function SHOULD be used because it increases the cost of an attack. The key derivation function SHALL use an approved one-way function such as Keyed Hash Message Authentication Code (HMAC) [FIPS 198-1], any approved hash function in SP 800-107, Secure Hash Algorithm 3 (SHA-3) [FIPS 202], CMAC [SP 800-38B] or Keccak Message Authentication Code (KMAC), Customizable SHAKE (cSHAKE), or ParallelHash [SP 800-185]. The chosen output length of the key derivation function SHOULD be the same as the length of the underlying one-way function output.

    The salt SHALL be at least 32 bits in length and be chosen arbitrarily so as to minimize salt value collisions among stored hashes. Both the salt value and the resulting hash SHALL be stored for each subscriber using a memorized secret authenticator.

    For PBKDF2, the cost factor is an iteration count: the more times the PBKDF2 function is iterated, the longer it takes to compute the password hash. Therefore, the iteration count SHOULD be as large as verification server performance will allow, typically at least 10,000 iterations.

    In addition, verifiers SHOULD perform an additional iteration of a key derivation function using a salt value that is secret and known only to the verifier. This salt value, if used, SHALL be generated by an approved random bit generator [SP 800-90Ar1] and provide at least the minimum security strength specified in the latest revision of SP 800-131A (112 bits as of the date of this publication). The secret salt value SHALL be stored separately from the hashed memorized secrets (e.g., in a specialized device like a hardware security module). With this additional iteration, brute-force attacks on the hashed memorized secrets are impractical as long as the secret salt value remains secret.

  • 相关阅读:
    库函数strstr的实现
    用两个队列实现一个栈
    二叉树的镜像
    VMware网络连接模式—桥接、NAT以及仅主机模式的详细介绍和区别
    CentOS6.5下搭建Samba服务实现与Windows系统之间共享文件资源
    CentOS6.5下搭建ftp服务器(三种认证模式:匿名用户、本地用户、虚拟用户)
    CentOS6.5下搭建VNC服务器
    MySQL数据库自动备份
    MySql登陆密码忘记了怎么办?MySQL重置root密码方法
    CentOS6.5使用yum快速搭建LAMP环境
  • 原文地址:https://www.cnblogs.com/chucklu/p/15497936.html
Copyright © 2020-2023  润新知