Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
|
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
|
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。 |
Sample Input
2 1 2 |
Sample Output
2 7 |
Code
View Code
|
Key Points
Fristly, it's the question which need inference.
If it's straight line, it's easy for you to find out that f(n)=f(n-1)+(n-1)+1.
Because when you add other straight line, it will increase n - 1 points, it means the number of surface will increase n.
The same to broken line.
When you add other broken line, it will add no more than 4(n-1) points, then the number of surface will increase 4(n-1)+1.
Consequently, you will get the formula: f(n)=f(n-1)+4n-3.
Secondly, according the formula, you can get another formula f(n)=2n^2-n+1 to simplify the code.
|
|