• 【bzoj1096】仓库建设 斜率优化dp


    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1096

    【题解】

    设输入的三个数组为a,b,c

    sumb维护b数组的前缀和,sumab维护a*b的前缀和。

    则状态转移方程:f[i]=min{f[j]+c[i]+a[i]*(sumb[i-1]-sum[j])-(sumab[i-1]-sumab[j])}

    斜率表达式:(f[j]+sumab[j]-f[k]-sumab[k])/(sumb[j]-sumb[k])>a[i]

    /*************
      bzoj 1096
      by chty
      2016.11.15
    *************/
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<ctime>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define FILE "read"
    #define MAXN 1000100
    #define up(i,j,n)  for(ll i=j;i<=n;i++)
    namespace INIT{
    	char buf[1<<15],*fs,*ft;
    	inline char getc() {return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;}
    	inline ll read(){
    		ll x=0,f=1;  char ch=getc();
    		while(!isdigit(ch))  {if(ch=='-')  f=-1;  ch=getc();}
    		while(isdigit(ch))  {x=x*10+ch-'0';  ch=getc();}
    		return x*f;
    	}
    }using namespace INIT;
    ll n,head,tail,a[MAXN],b[MAXN],c[MAXN],f[MAXN],sumb[MAXN],sumab[MAXN],q[MAXN];
    void init(){
    	n=read();
    	up(i,1,n) a[i]=read(),b[i]=read(),c[i]=read();
    	up(i,1,n) sumb[i]=sumb[i-1]+b[i],sumab[i]=sumab[i-1]+a[i]*b[i];
    }
    inline double slop(ll j,ll k) {return (double)((f[j]+sumab[j])-(f[k]+sumab[k]))/(double)(sumb[j]-sumb[k]);}
    void solve(){
    	up(i,1,n){
    		while(head<tail&&slop(q[head],q[head+1])<a[i])  head++;
    		ll t=q[head];
    		f[i]=f[t]+c[i]+a[i]*(sumb[i-1]-sumb[t])-(sumab[i-1]-sumab[t]);
    		while(head<tail&&slop(q[tail-1],q[tail])>slop(q[tail],i))  tail--;
    		q[++tail]=i;
    	}
    	printf("%lld
    ",f[n]);
    }
    int main(){
    	freopen(FILE".in","r",stdin);
    	freopen(FILE".out","w",stdout);
    	init();
    	solve();
    	return 0;
    }
    


  • 相关阅读:
    @codeforces
    @atcoder
    @loj
    @atcoder
    @atcoder
    @loj
    @atcoder
    @atcoder
    @atcoder
    @uoj
  • 原文地址:https://www.cnblogs.com/chty/p/6068114.html
Copyright © 2020-2023  润新知