Spark 分区
tag: Spark, Spark Partitioner, Spark Repartition
2021-04-2513:36:44 星期六
version: spark-2.4.5
分区器
自定义key分发的逻辑仅在 RDD 级别适用。
-
Partitioner
自定义分区器abstract class Partitioner extends Serializable { abstract def getPartition(key: Any): Int // 返回值类似于数组Index abstract def numPartitions: Int }
-
HashPartitioner
自带Hash分区器, 分区ID: key.hashCode % numPartitions 负数则加Mod否则返回class HashPartitioner extends Partitioner{ new HashPartitioner(partitions: Int) }
-
RangePartitioner
相比HashPartitioner,RangePartitioner分区会尽量保证每个分区中数据量的均匀, 要求Key可比较.
将分区数据分成块, 用鱼塘抽样对块计算(主要是为了得到尽量多的值 与其count) 之后就是选分隔符, 就跟HBase的Region的范围似的class RangePartitioner[K, V] extends Partitioner
重分区算子
-
coalesce
返回numPartitions个分区的新RDD, 当shuffle = false时, 这是一个 narrow dependency 算子性能较好,
一般用来减少分区数, 比如从 100 -> 10(最好不少于Executor个数)def coalesce(numPartitions: Int, shuffle: Boolean = false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty)(implicit ord: Ordering[T] = null): RDD[T]
-
repartition
带有Shuffle的Repartition, 可以任意调节分区数./** Return a new RDD that has exactly numPartitions partitions. */ def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
-
repartitionAndSortWithinPartitions
返回按照Partitioner给出的Key重分区并顺序排序后的RDD, 利用ShuffleSortManager实现, 相比于 repartition + sortByKey 性能更好.
即相当于 sortByKey -> exchange -> merge/** * Repartition the RDD according to the given partitioner and, within each resulting * partition, sort records by their keys. * This is more efficient than calling repartition and then sorting within each * partition because it can push the sorting down into the shuffle machinery. */ def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)]
分区数变化
- Spark RDD/DS从文件得来则遵循文件分割规则, 有N个分区
- 进行coalesce减少分区操作则分区数N减少
- 执行map类不会改变分区数的操作则分区数与父RDD/DS相同
- 进行repartition 则变更分区数为规定的分区数
- 进行宽依赖计算则在shuffle后分区变为参数设置的并发度