• Flink


    Flink在流上最大的特点,就是引入全局snapshot,

     

    CheckpointCoordinator

    做snapshot的核心组件为, CheckpointCoordinator

    /**
     * The checkpoint coordinator coordinates the distributed snapshots of operators and state.
     * It triggers the checkpoint by sending the messages to the relevant tasks and collects the
     * checkpoint acknowledgements. It also collects and maintains the overview of the state handles
     * reported by the tasks that acknowledge the checkpoint.
     *
     * <p>Depending on the configured {@link RecoveryMode}, the behaviour of the {@link
     * CompletedCheckpointStore} and {@link CheckpointIDCounter} change. The default standalone
     * implementations don't support any recovery.
     */
    public class CheckpointCoordinator {
    
        /** Tasks who need to be sent a message when a checkpoint is started */
        private final ExecutionVertex[] tasksToTrigger; //需要触发checkpoint的tasks
    
        /** Tasks who need to acknowledge a checkpoint before it succeeds */
        private final ExecutionVertex[] tasksToWaitFor;
    
        /** Tasks who need to be sent a message when a checkpoint is confirmed */
        private final ExecutionVertex[] tasksToCommitTo;
    
        /** Map from checkpoint ID to the pending checkpoint */
        private final Map<Long, PendingCheckpoint> pendingCheckpoints;
    
        /** Completed checkpoints. Implementations can be blocking. Make sure calls to methods
         * accessing this don't block the job manager actor and run asynchronously. */
        private final CompletedCheckpointStore completedCheckpointStore;  //用于记录已经完成的checkpoints
    
        /** A list of recent checkpoint IDs, to identify late messages (vs invalid ones) */
        private final ArrayDeque<Long> recentPendingCheckpoints;
    
        /** Checkpoint ID counter to ensure ascending IDs. In case of job manager failures, these
         * need to be ascending across job managers. */
        protected final CheckpointIDCounter checkpointIdCounter; //保证产生递增的checkpoint id,即使当jobmanager crash,也有保证全局checkpoint id是递增的
    
        /** The base checkpoint interval. Actual trigger time may be affected by the
         * max concurrent checkpoints and minimum-pause values */
        private final long baseInterval;  //触发checkpoint的时间间隔
    
        /** The max time (in ms) that a checkpoint may take */
        private final long checkpointTimeout; //一次checkpoint消耗的最大时间,超过,我们就可以认为该checkpoint超时失败
    
        /** The min time(in ms) to delay after a checkpoint could be triggered. Allows to
         * enforce minimum processing time between checkpoint attempts */
        private final long minPauseBetweenCheckpoints; //checkpoint之间的最小间隔
    
        /** The maximum number of checkpoints that may be in progress at the same time */
        private final int maxConcurrentCheckpointAttempts; //最多同时存在多少checkpoint
    
        /** Actor that receives status updates from the execution graph this coordinator works for */
        private ActorGateway jobStatusListener;
    
        /** The number of consecutive failed trigger attempts */
        private int numUnsuccessfulCheckpointsTriggers;
    
        private ScheduledTrigger currentPeriodicTrigger;
    
        /** Flag whether a triggered checkpoint should immediately schedule the next checkpoint.
         * Non-volatile, because only accessed in synchronized scope */
        private boolean periodicScheduling;
    
        /** Flag whether a trigger request could not be handled immediately. Non-volatile, because only
         * accessed in synchronized scope */
        private boolean triggerRequestQueued;
    
        /** Flag marking the coordinator as shut down (not accepting any messages any more) */
        private volatile boolean shutdown; //注意是volatile,保证可见性
    
        /** Shutdown hook thread to clean up state handles. */
        private final Thread shutdownHook;
    
        /** Helper for tracking checkpoint statistics  */
        private final CheckpointStatsTracker statsTracker;
    
    
        public CheckpointCoordinator(
                JobID job,
                long baseInterval,
                long checkpointTimeout,
                long minPauseBetweenCheckpoints,
                int maxConcurrentCheckpointAttempts,
                ExecutionVertex[] tasksToTrigger,
                ExecutionVertex[] tasksToWaitFor,
                ExecutionVertex[] tasksToCommitTo,
                ClassLoader userClassLoader,
                CheckpointIDCounter checkpointIDCounter,
                CompletedCheckpointStore completedCheckpointStore,
                RecoveryMode recoveryMode,
                CheckpointStatsTracker statsTracker) throws Exception {
    
            checkpointIDCounter.start(); //开启CheckpointIDCounter
    
            this.timer = new Timer("Checkpoint Timer", true);
    
            this.statsTracker = checkNotNull(statsTracker);
    
            if (recoveryMode == RecoveryMode.STANDALONE) { // 如果是standalone模式,需要加上shutdownHook来清理state
                // Add shutdown hook to clean up state handles when no checkpoint recovery is
                // possible. In case of another configured recovery mode, the checkpoints need to be
                // available for the standby job managers.
                this.shutdownHook = new Thread(new Runnable() {
                    @Override
                    public void run() {
                        try {
                            CheckpointCoordinator.this.shutdown(); //显示的调用shutdown
                        }
                        catch (Throwable t) {
                            LOG.error("Error during shutdown of checkpoint coordinator via " +
                                    "JVM shutdown hook: " + t.getMessage(), t);
                        }
                    }
                });
    
                try {
                    // Add JVM shutdown hook to call shutdown of service
                    Runtime.getRuntime().addShutdownHook(shutdownHook);
                }
                catch (IllegalStateException ignored) {
                    // JVM is already shutting down. No need to do anything.
                }
                catch (Throwable t) {
                    LOG.error("Cannot register checkpoint coordinator shutdown hook.", t);
                }
            }
            else {
                this.shutdownHook = null;
            }
        }

     

    CheckpointIDCounter

    有两种,

    StandaloneCheckpointIDCounter

    这种case下的,counter,只是用AtomicLong来是实现的,那JobManager如果挂了,那这个值可能是丢了的,重启后,应该是无法保证递增的

    但这里说,在standalone的情况下,不需要做recovery,所以这个是可以接受的

    /**
     * {@link CheckpointIDCounter} instances for JobManagers running in {@link RecoveryMode#STANDALONE}.
     *
     * <p>Simple wrapper of an {@link AtomicLong}. This is sufficient, because job managers are not
     * recoverable in this recovery mode.
     */
    public class StandaloneCheckpointIDCounter implements CheckpointIDCounter {
    
        private final AtomicLong checkpointIdCounter = new AtomicLong(1);
    
        @Override
        public void start() throws Exception {
        }
    
        @Override
        public void stop() throws Exception {
        }
    
        @Override
        public long getAndIncrement() throws Exception {
            return checkpointIdCounter.getAndIncrement();
        }
    
        @Override
        public void setCount(long newCount) {
            checkpointIdCounter.set(newCount);
        }
    }

     

    ZooKeeperCheckpointIDCounter

    这种counter用zk的persistent node来保存当前的计数,以保证计数的递增

    /**
     * {@link CheckpointIDCounter} instances for JobManagers running in {@link RecoveryMode#ZOOKEEPER}.
     *
     * <p>Each counter creates a ZNode:
     * <pre>
     * +----O /flink/checkpoint-counter/&lt;job-id&gt; 1 [persistent]
     * .
     * .
     * .
     * +----O /flink/checkpoint-counter/&lt;job-id&gt; N [persistent]
     * </pre>
     *
     * <p>The checkpoints IDs are required to be ascending (per job). In order to guarantee this in case
     * of job manager failures we use ZooKeeper to have a shared counter across job manager instances.
     */
    public class ZooKeeperCheckpointIDCounter implements CheckpointIDCounter

     

    CompletedCheckpointStore

    接口,用于记录有哪些已经完成的checkpoint

    /**
     * A bounded LIFO-queue of {@link CompletedCheckpoint} instances.
     */
    public interface CompletedCheckpointStore {
    
        /**
         * Recover available {@link CompletedCheckpoint} instances.
         *
         * <p>After a call to this method, {@link #getLatestCheckpoint()} returns the latest
         * available checkpoint.
         */
        void recover() throws Exception;
    
        /**
         * Adds a {@link CompletedCheckpoint} instance to the list of completed checkpoints.
         *
         * <p>Only a bounded number of checkpoints is kept. When exceeding the maximum number of
         * retained checkpoints, the oldest one will be discarded via {@link
         * CompletedCheckpoint#discard(ClassLoader)}.
         */
        void addCheckpoint(CompletedCheckpoint checkpoint) throws Exception;
    
        /**
         * Returns the latest {@link CompletedCheckpoint} instance or <code>null</code> if none was
         * added.
         */
        CompletedCheckpoint getLatestCheckpoint() throws Exception;
    
        /**
         * Discards all added {@link CompletedCheckpoint} instances via {@link
         * CompletedCheckpoint#discard(ClassLoader)}.
         */
        void discardAllCheckpoints() throws Exception;
    
        /**
         * Returns all {@link CompletedCheckpoint} instances.
         *
         * <p>Returns an empty list if no checkpoint has been added yet.
         */
        List<CompletedCheckpoint> getAllCheckpoints() throws Exception;
    
        /**
         * Returns the current number of retained checkpoints.
         */
        int getNumberOfRetainedCheckpoints();
    
    }

     

    看下StandaloneCompletedCheckpointStore,其实就是一个用于记录CompletedCheckpoint的ArrayDeque

    class StandaloneCompletedCheckpointStore implements CompletedCheckpointStore {
    
        /** The completed checkpoints. */
        private final ArrayDeque<CompletedCheckpoint> checkpoints;
    }

    ZooKeeperCompletedCheckpointStore,这个就是用zk来记录

    /**
     * {@link CompletedCheckpointStore} for JobManagers running in {@link RecoveryMode#ZOOKEEPER}.
     *
     * <p>Checkpoints are added under a ZNode per job:
     * <pre>
     * +----O /flink/checkpoints/&lt;job-id&gt;  [persistent]
     * .    |
     * .    +----O /flink/checkpoints/&lt;job-id&gt;/1 [persistent]
     * .    .                                  .
     * .    .                                  .
     * .    .                                  .
     * .    +----O /flink/checkpoints/&lt;job-id&gt;/N [persistent]
     * </pre>
     *
     * <p>During recovery, the latest checkpoint is read from ZooKeeper. If there is more than one,
     * only the latest one is used and older ones are discarded (even if the maximum number
     * of retained checkpoints is greater than one).
     *
     * <p>If there is a network partition and multiple JobManagers run concurrent checkpoints for the
     * same program, it is OK to take any valid successful checkpoint as long as the "history" of
     * checkpoints is consistent. Currently, after recovery we start out with only a single
     * checkpoint to circumvent those situations.
     */
    public class ZooKeeperCompletedCheckpointStore implements CompletedCheckpointStore {

     

     

    做snapshot流程

    StreamingJobGraphGenerator

    配置checkpoint
    private void configureCheckpointing() {
        CheckpointConfig cfg = streamGraph.getCheckpointConfig(); //取出Checkpoint的配置
        
        if (cfg.isCheckpointingEnabled()) {
            long interval = cfg.getCheckpointInterval(); //Checkpoint的时间间隔
    
            // collect the vertices that receive "trigger checkpoint" messages.
            // currently, these are all the sources
            List<JobVertexID> triggerVertices = new ArrayList<JobVertexID>();
    
            // collect the vertices that need to acknowledge the checkpoint
            // currently, these are all vertices
            List<JobVertexID> ackVertices = new ArrayList<JobVertexID>(jobVertices.size());
    
            // collect the vertices that receive "commit checkpoint" messages
            // currently, these are all vertices
            List<JobVertexID> commitVertices = new ArrayList<JobVertexID>();
            
            for (JobVertex vertex : jobVertices.values()) {
                if (vertex.isInputVertex()) {  //只有对source vertex,才加入triggerVertices,因为只需要在源头触发checkpoint
                    triggerVertices.add(vertex.getID());
                }
                // TODO: add check whether the user function implements the checkpointing interface
                commitVertices.add(vertex.getID()); //当前所有节点都会加入commitVertices和ackVertices
                ackVertices.add(vertex.getID());
            }
    
            JobSnapshottingSettings settings = new JobSnapshottingSettings( //生成JobSnapshottingSettings
                    triggerVertices, ackVertices, commitVertices, interval,
                    cfg.getCheckpointTimeout(), cfg.getMinPauseBetweenCheckpoints(),
                    cfg.getMaxConcurrentCheckpoints());
            jobGraph.setSnapshotSettings(settings); //调用setSnapshotSettings
    
            // if the user enabled checkpointing, the default number of exec retries is infinitive.
            int executionRetries = streamGraph.getExecutionConfig().getNumberOfExecutionRetries();
            if(executionRetries == -1) {
                streamGraph.getExecutionConfig().setNumberOfExecutionRetries(Integer.MAX_VALUE);
            }
        }
    }

     

    JobManager

    submitJob的时候,将JobGraph中的配置,放到ExecutionGraph中去

    private def submitJob(jobGraph: JobGraph, jobInfo: JobInfo, isRecovery: Boolean = false): Unit = {
    
        // configure the state checkpointing
        val snapshotSettings = jobGraph.getSnapshotSettings
        if (snapshotSettings != null) {
            val jobId = jobGraph.getJobID()
            
            val idToVertex: JobVertexID => ExecutionJobVertex = id => {
            val vertex = executionGraph.getJobVertex(id)
            if (vertex == null) {
              throw new JobSubmissionException(jobId,
                "The snapshot checkpointing settings refer to non-existent vertex " + id)
            }
            vertex
        }
        
        val triggerVertices: java.util.List[ExecutionJobVertex] =
            snapshotSettings.getVerticesToTrigger().asScala.map(idToVertex).asJava
        
        val ackVertices: java.util.List[ExecutionJobVertex] =
            snapshotSettings.getVerticesToAcknowledge().asScala.map(idToVertex).asJava
        
        val confirmVertices: java.util.List[ExecutionJobVertex] =
            snapshotSettings.getVerticesToConfirm().asScala.map(idToVertex).asJava
        
        val completedCheckpoints = checkpointRecoveryFactory
            .createCompletedCheckpoints(jobId, userCodeLoader)
        
        val checkpointIdCounter = checkpointRecoveryFactory.createCheckpointIDCounter(jobId)
        
        executionGraph.enableSnapshotCheckpointing(
            snapshotSettings.getCheckpointInterval,
            snapshotSettings.getCheckpointTimeout,
            snapshotSettings.getMinPauseBetweenCheckpoints,
            snapshotSettings.getMaxConcurrentCheckpoints,
            triggerVertices,
            ackVertices,
            confirmVertices,
            context.system,
            leaderSessionID.orNull,
            checkpointIdCounter,
            completedCheckpoints,
            recoveryMode,
            savepointStore)
        }
    }

     

    ExecutionGraph

    创建checkpointCoordinator对象

    public void enableSnapshotCheckpointing(
            long interval,
            long checkpointTimeout,
            long minPauseBetweenCheckpoints,
            int maxConcurrentCheckpoints,
            List<ExecutionJobVertex> verticesToTrigger,
            List<ExecutionJobVertex> verticesToWaitFor,
            List<ExecutionJobVertex> verticesToCommitTo,
            ActorSystem actorSystem,
            UUID leaderSessionID,
            CheckpointIDCounter checkpointIDCounter,
            CompletedCheckpointStore completedCheckpointStore,
            RecoveryMode recoveryMode,
            StateStore<Savepoint> savepointStore) throws Exception {
    
        ExecutionVertex[] tasksToTrigger = collectExecutionVertices(verticesToTrigger);
        ExecutionVertex[] tasksToWaitFor = collectExecutionVertices(verticesToWaitFor);
        ExecutionVertex[] tasksToCommitTo = collectExecutionVertices(verticesToCommitTo);
        
        // disable to make sure existing checkpoint coordinators are cleared
        disableSnaphotCheckpointing();
    
        if (isStatsDisabled) {
            checkpointStatsTracker = new DisabledCheckpointStatsTracker();
        }
        else {
            int historySize = jobConfiguration.getInteger(
                    ConfigConstants.JOB_MANAGER_WEB_CHECKPOINTS_HISTORY_SIZE,
                    ConfigConstants.DEFAULT_JOB_MANAGER_WEB_CHECKPOINTS_HISTORY_SIZE);
    
            checkpointStatsTracker = new SimpleCheckpointStatsTracker(historySize, tasksToWaitFor);
        }
    
        // create the coordinator that triggers and commits checkpoints and holds the state
        checkpointCoordinator = new CheckpointCoordinator(
                jobID,
                interval,
                checkpointTimeout,
                minPauseBetweenCheckpoints,
                maxConcurrentCheckpoints,
                tasksToTrigger,
                tasksToWaitFor,
                tasksToCommitTo,
                userClassLoader,
                checkpointIDCounter,
                completedCheckpointStore,
                recoveryMode,
                checkpointStatsTracker);
        
        // the periodic checkpoint scheduler is activated and deactivated as a result of
        // job status changes (running -> on, all other states -> off)
        registerJobStatusListener( //将checkpointCoordinator的actor注册到jobStatusListenerActors,这样当job状态变化时,可以通知checkpointCoordinator
                checkpointCoordinator.createActivatorDeactivator(actorSystem, leaderSessionID));

    这里看到checkpointCoordinator 作为ExecutionGraph的成员,

    接着会异步的提交ExecutionGraph,

    // execute the recovery/writing the jobGraph into the SubmittedJobGraphStore asynchronously
    // because it is a blocking operation
    future {
        try {
          if (isRecovery) {
            executionGraph.restoreLatestCheckpointedState() //恢复CheckpointedState
          }
          else {
            //...... 
          }
            submittedJobGraphs.putJobGraph(new SubmittedJobGraph(jobGraph, jobInfo)) //把jobGraph放到submittedJobGraphs中track
          }
        
          jobInfo.client ! decorateMessage(JobSubmitSuccess(jobGraph.getJobID)) //告诉client,job提交成功
        
          if (leaderElectionService.hasLeadership) {
            executionGraph.scheduleForExecution(scheduler) //真正的调度executionGraph
          } else {
            //......
          }
        } catch {
          //.......
        }
    }(context.dispatcher)

     

    CheckpointCoordinatorDeActivator

    /**
     * This actor listens to changes in the JobStatus and activates or deactivates the periodic
     * checkpoint scheduler.
     */
    public class CheckpointCoordinatorDeActivator extends FlinkUntypedActor {
    
        private final CheckpointCoordinator coordinator;
        private final UUID leaderSessionID;
    
        @Override
        public void handleMessage(Object message) {
            if (message instanceof ExecutionGraphMessages.JobStatusChanged) {
                JobStatus status = ((ExecutionGraphMessages.JobStatusChanged) message).newJobStatus();
                
                if (status == JobStatus.RUNNING) {
                    // start the checkpoint scheduler
                    coordinator.startCheckpointScheduler();
                } else {
                    // anything else should stop the trigger for now
                    coordinator.stopCheckpointScheduler();
                }
            }
            
            // we ignore all other messages
        }
    
        @Override
        public UUID getLeaderSessionID() {
            return leaderSessionID;
        }
    }

    在job状态发生变化时,需要打开或关闭Checkpoint scheduler

     

    CheckpointCoordinator

    开启定时startCheckpointScheduler

    public void startCheckpointScheduler() {
        synchronized (lock) {
            // make sure all prior timers are cancelled
            stopCheckpointScheduler();
    
            periodicScheduling = true;
            currentPeriodicTrigger = new ScheduledTrigger();
            timer.scheduleAtFixedRate(currentPeriodicTrigger, baseInterval, baseInterval);
        }
    }
    
    private class ScheduledTrigger extends TimerTask {
    
        @Override
        public void run() {
            try {
                triggerCheckpoint(System.currentTimeMillis());
            }
            catch (Exception e) {
                LOG.error("Exception while triggering checkpoint", e);
            }
        }
    }

     

    triggerCheckpoint,用于触发一次checkpoint

    /**
     * Triggers a new checkpoint and uses the given timestamp as the checkpoint
     * timestamp.
     *
     * @param timestamp The timestamp for the checkpoint.
     * @param nextCheckpointId The checkpoint ID to use for this checkpoint or <code>-1</code> if
     *                         the checkpoint ID counter should be queried.
     */
    public boolean triggerCheckpoint(long timestamp, long nextCheckpointId) throws Exception {
    
        // we will actually trigger this checkpoint!
        final long checkpointID;
        if (nextCheckpointId < 0) {
            try {
                // this must happen outside the locked scope, because it communicates
                // with external services (in HA mode) and may block for a while.
                checkpointID = checkpointIdCounter.getAndIncrement();
            }
            catch (Throwable t) {
    
            }
        }
        else {
            checkpointID = nextCheckpointId;
        }
    
        //对于没有开始的Checkpoint,称为PendingCheckpoint,传入所有需要ack checkpoint的ackTasks
        //后续会一个个ack这些tasks,当所有的ackTasks都被acked,PendingCheckpoint就变成CompletedCheckpoint
        final PendingCheckpoint checkpoint = new PendingCheckpoint(job, checkpointID, timestamp, ackTasks);
    
        // schedule the timer that will clean up the expired checkpoints,定期去清理过期的checkpoint
        TimerTask canceller = new TimerTask() {
            @Override
            public void run() {
                try {
                    synchronized (lock) {
                        // only do the work if the checkpoint is not discarded anyways
                        // note that checkpoint completion discards the pending checkpoint object
                        if (!checkpoint.isDiscarded()) {
                            LOG.info("Checkpoint " + checkpointID + " expired before completing.");
    
                            checkpoint.discard(userClassLoader);
                            pendingCheckpoints.remove(checkpointID);
                            rememberRecentCheckpointId(checkpointID);
    
                            onCancelCheckpoint(checkpointID);
    
                            triggerQueuedRequests();
                        }
                    }
                }
                catch (Throwable t) {
                    LOG.error("Exception while handling checkpoint timeout", t);
                }
            }
        };
    
        try {
            // re-acquire the lock
            synchronized (lock) {
                pendingCheckpoints.put(checkpointID, checkpoint); //将该PendingCheckpoint加入列表track
                timer.schedule(canceller, checkpointTimeout);  //并且启动canceller
            }
            // end of lock scope
    
            // send the messages to the tasks that trigger their checkpoint
            for (int i = 0; i < tasksToTrigger.length; i++) {
                ExecutionAttemptID id = triggerIDs[i];
                TriggerCheckpoint message = new TriggerCheckpoint(job, id, checkpointID, timestamp);
                tasksToTrigger[i].sendMessageToCurrentExecution(message, id); //给所有的需要触发checkpoint的task发送checkpoint message,这里只是source tasks
            }
    
            numUnsuccessfulCheckpointsTriggers = 0;
            return true;
        }
        catch (Throwable t) {
    
        }
    }

    ---------上面只会给所有的source发checkpoint message,所以下面的流程只有source会走到-----------

     

    TaskManager

    sendMessageToCurrentExecution,发送的message最终会被TaskManager收到,

    /**
       * Handler for messages related to checkpoints.
       *
       * @param actorMessage The checkpoint message.
       */
      private def handleCheckpointingMessage(actorMessage: AbstractCheckpointMessage): Unit = {
    
        actorMessage match {
          case message: TriggerCheckpoint =>  //如果是triggerCheckpoint
            val taskExecutionId = message.getTaskExecutionId
            val checkpointId = message.getCheckpointId
            val timestamp = message.getTimestamp
    
            val task = runningTasks.get(taskExecutionId) //从runningTasks中取出真正执行的task
            if (task != null) {
              task.triggerCheckpointBarrier(checkpointId, timestamp) //最终是调用task的triggerCheckpointBarrier
            }
    
          case message: NotifyCheckpointComplete =>
            val taskExecutionId = message.getTaskExecutionId
            val checkpointId = message.getCheckpointId
            val timestamp = message.getTimestamp
    
    
            val task = runningTasks.get(taskExecutionId)
            if (task != null) {
              task.notifyCheckpointComplete(checkpointId) //调用task的notifyCheckpointComplete
            } else {
              log.debug(
                s"TaskManager received a checkpoint confirmation for unknown task $taskExecutionId.")
            }
    
          // unknown checkpoint message
          case _ => unhandled(actorMessage)
        }
      }

     

    Task

    public void triggerCheckpointBarrier(final long checkpointID, final long checkpointTimestamp) {
        AbstractInvokable invokable = this.invokable;
    
        if (executionState == ExecutionState.RUNNING && invokable != null) {
            if (invokable instanceof StatefulTask) {
    
                // build a local closure 
                final StatefulTask<?> statefulTask = (StatefulTask<?>) invokable;
                final String taskName = taskNameWithSubtask;
    
                Runnable runnable = new Runnable() {
                    @Override
                    public void run() {
                        try {
                            statefulTask.triggerCheckpoint(checkpointID, checkpointTimestamp); //关键就是调用statefulTask的triggerCheckpoint,这个时候task正在执行,所以checkpoint是并行做的
                        }
                        catch (Throwable t) {
                            failExternally(new RuntimeException("Error while triggering checkpoint for " + taskName, t));
                        }
                    }
                };
                executeAsyncCallRunnable(runnable, "Checkpoint Trigger for " + taskName);
            }
        }
    }

     

    StreamTask

    StreamTask就是实现了StatefulTask

    所以最终调用到,

    StreamTask.triggerCheckpoint,这里面会实际去做checkpoint工作
    调用performCheckpoint(checkpointId, timestamp)
    protected boolean performCheckpoint(final long checkpointId, final long timestamp) throws Exception {
        
        synchronized (lock) { //加锁,checkpoint需要stop world
            if (isRunning) {
    
                // Since both state checkpointing and downstream barrier emission occurs in this
                // lock scope, they are an atomic operation regardless of the order in which they occur.
                // Given this, we immediately emit the checkpoint barriers, so the downstream operators
                // can start their checkpoint work as soon as possible
                operatorChain.broadcastCheckpointBarrier(checkpointId, timestamp); //立即发出barrier,理由如上注释
                
                // now draw the state snapshot
                final StreamOperator<?>[] allOperators = operatorChain.getAllOperators();
                final StreamTaskState[] states = new StreamTaskState[allOperators.length];
    
                boolean hasAsyncStates = false;
    
                for (int i = 0; i < states.length; i++) { //根据各个state的类型,判断是否需要异步
                    StreamOperator<?> operator = allOperators[i];
                    if (operator != null) {
                        StreamTaskState state = operator.snapshotOperatorState(checkpointId, timestamp);
                        if (state.getOperatorState() instanceof AsynchronousStateHandle) {
                            hasAsyncStates = true;
                        }
                        if (state.getFunctionState() instanceof AsynchronousStateHandle) {
                            hasAsyncStates = true;
                        }
                        if (state.getKvStates() != null) {
                            for (KvStateSnapshot<?, ?, ?, ?, ?> kvSnapshot: state.getKvStates().values()) {
                                if (kvSnapshot instanceof AsynchronousKvStateSnapshot) {
                                    hasAsyncStates = true;
                                }
                            }
                        }
    
                        states[i] = state.isEmpty() ? null : state;
                    }
                }
    
                for (int i = 0; i < states.length; i++) { //为所有的Operator生成snapshot的StreamTaskState
                    StreamOperator<?> operator = allOperators[i];
                    if (operator != null) {
                        StreamTaskState state = operator.snapshotOperatorState(checkpointId, timestamp); //通过operator.snapshotOperatorState生成StreamTaskState
                        states[i] = state.isEmpty() ? null : state;
                    }
                }
    
                StreamTaskStateList allStates = new StreamTaskStateList(states);
                
                
                //异步或同步的进行checkpoint
                if (allStates.isEmpty()) {
                    getEnvironment().acknowledgeCheckpoint(checkpointId);
                } else if (!hasAsyncStates) { //sync方式
                    this.lastCheckpointSize = allStates.getStateSize();
                    getEnvironment().acknowledgeCheckpoint(checkpointId, allStates);
                } else { //async方式
                    // start a Thread that does the asynchronous materialization and
                    // then sends the checkpoint acknowledge
                    String threadName = "Materialize checkpoint state " + checkpointId + " - " + getName();
                    AsyncCheckpointThread checkpointThread = new AsyncCheckpointThread(
                            threadName, this, cancelables, states, checkpointId);
    
                    synchronized (cancelables) {
                        cancelables.add(checkpointThread);
                    }
                    checkpointThread.start();
                }
                return true;
            } else {
                return false;
            }
        }
    }
    这里是对于source而言的checkpoint的调用逻辑,对于中间节点或sink,是要根据barrier情况,通过onEvent来触发triggerCheckpoint的

     

    StreamTask.triggerCheckpoint最关键的步骤是,会对task中每个operator完成state snapshot
    最终生成StreamTaskStateList allStates,保存所有的state的list

    最终同步或异步的调用

    getEnvironment().acknowledgeCheckpoint(checkpointId, allStates);

    把state snapshot发送到Jobmanager去,后面就看看JobManager怎么处理的

    同步的方式比较简单,但是一般都是需要异步的做snapshot的,

    看看异步的AsyncCheckpointThread

    AsyncCheckpointThread
    @Override
    public void run() {
        try {
            for (StreamTaskState state : states) {
                if (state != null) {
                    if (state.getFunctionState() instanceof AsynchronousStateHandle) {
                        AsynchronousStateHandle<Serializable> asyncState = (AsynchronousStateHandle<Serializable>) state.getFunctionState();
                        state.setFunctionState(asyncState.materialize());
                    }
                    if (state.getOperatorState() instanceof AsynchronousStateHandle) {
                        AsynchronousStateHandle<?> asyncState = (AsynchronousStateHandle<?>) state.getOperatorState();
                        state.setOperatorState(asyncState.materialize());
                    }
                    if (state.getKvStates() != null) {
                        Set<String> keys = state.getKvStates().keySet();
                        HashMap<String, KvStateSnapshot<?, ?, ?, ?, ?>> kvStates = state.getKvStates();
                        for (String key: keys) {
                            if (kvStates.get(key) instanceof AsynchronousKvStateSnapshot) {
                                AsynchronousKvStateSnapshot<?, ?, ?, ?, ?> asyncHandle = (AsynchronousKvStateSnapshot<?, ?, ?, ?, ?>) kvStates.get(key);
                                kvStates.put(key, asyncHandle.materialize()); //可以看到把真正的存储,delay到这里的materialize去做
                            }
                        }
                    }
    
                }
            }
            StreamTaskStateList allStates = new StreamTaskStateList(states);
            owner.lastCheckpointSize = allStates.getStateSize();
            owner.getEnvironment().acknowledgeCheckpoint(checkpointId, allStates);
    
            LOG.debug("Finished asynchronous checkpoints for checkpoint {} on task {}", checkpointId, getName());
        }

     

    RuntimeEnvironment

    package org.apache.flink.runtime.taskmanager;
    /**
     * In implementation of the {@link Environment}.
     */
    public class RuntimeEnvironment implements Environment {
        @Override
        public void acknowledgeCheckpoint(long checkpointId, StateHandle<?> state) {
            // try and create a serialized version of the state handle
            SerializedValue<StateHandle<?>> serializedState;
            long stateSize;
    
            if (state == null) {
                serializedState = null;
                stateSize = 0;
            } else {
                try {
                    serializedState = new SerializedValue<StateHandle<?>>(state);
                } catch (Exception e) {
                    throw new RuntimeException("Failed to serialize state handle during checkpoint confirmation", e);
                }
    
                try {
                    stateSize = state.getStateSize();
                }
                catch (Exception e) {
                    throw new RuntimeException("Failed to fetch state handle size", e);
                }
            }
            
            AcknowledgeCheckpoint message = new AcknowledgeCheckpoint(
                    jobId,
                    executionId,
                    checkpointId,
                    serializedState,
                    stateSize);
    
            jobManager.tell(message);
        }
    }

    所以可以看到,是把这个ack发送到job manager的,

     

    JobManager

    handleCheckpointMessage

    /**
    * Dedicated handler for checkpoint messages.
    *
    * @param actorMessage The checkpoint actor message.
    */
    private def handleCheckpointMessage(actorMessage: AbstractCheckpointMessage): Unit = {
    actorMessage match {
      case ackMessage: AcknowledgeCheckpoint =>
        val jid = ackMessage.getJob()
        currentJobs.get(jid) match {
          case Some((graph, _)) =>
            val checkpointCoordinator = graph.getCheckpointCoordinator()
            val savepointCoordinator = graph.getSavepointCoordinator()
    
            if (checkpointCoordinator != null && savepointCoordinator != null) {
              future {  //future等待异步的ack消息
                try {
                  if (checkpointCoordinator.receiveAcknowledgeMessage(ackMessage)) { //JobManager收到checkpoint的ack message
                    // OK, this is the common case
                  }
                  else {
                    // Try the savepoint coordinator if the message was not addressed
                    // to the periodic checkpoint coordinator.
                    if (!savepointCoordinator.receiveAcknowledgeMessage(ackMessage)) {
                      log.info("Received message for non-existing checkpoint " +
                        ackMessage.getCheckpointId)
                    }
                  }
                }
                catch {
                  case t: Throwable =>
                    log.error(s"Error in CheckpointCoordinator while processing $ackMessage", t)
                }
              }(context.dispatcher)
            }

     

    CheckpointCoordinator

    receiveAcknowledgeMessage

    /**
     * Receives an AcknowledgeCheckpoint message and returns whether the
     * message was associated with a pending checkpoint.
     *
     * @param message Checkpoint ack from the task manager
     *
     * @return Flag indicating whether the ack'd checkpoint was associated
     * with a pending checkpoint.
     *
     * @throws Exception If the checkpoint cannot be added to the completed checkpoint store.
     */
    public boolean receiveAcknowledgeMessage(AcknowledgeCheckpoint message) throws Exception {
    
        final long checkpointId = message.getCheckpointId();
    
        CompletedCheckpoint completed = null;
        PendingCheckpoint checkpoint;
    
        // Flag indicating whether the ack message was for a known pending
        // checkpoint.
        boolean isPendingCheckpoint;
    
        synchronized (lock) {
    
            checkpoint = pendingCheckpoints.get(checkpointId); //取出相应的pendingCheckpoint
    
            if (checkpoint != null && !checkpoint.isDiscarded()) {
                isPendingCheckpoint = true;
    
                if (checkpoint.acknowledgeTask(message.getTaskExecutionId(), message.getState(), message.getStateSize())) { //根据这个ack message,对pendingCheckpoint进行ack
                    if (checkpoint.isFullyAcknowledged()) { //如果所有需要ack的tasks都完成ack
                        completed = checkpoint.toCompletedCheckpoint(); //将状态置为Completed
    
                        completedCheckpointStore.addCheckpoint(completed); //将checkpoint track到completedCheckpointStore,表示完成一次完整的checkpoint
    
                        pendingCheckpoints.remove(checkpointId); //从pending里面去除相应的checkpoint
                        rememberRecentCheckpointId(checkpointId);
    
                        dropSubsumedCheckpoints(completed.getTimestamp());
    
                        onFullyAcknowledgedCheckpoint(completed);
    
                        triggerQueuedRequests();
                    }
                }
    
            }
        }
    
        // send the confirmation messages to the necessary targets. we do this here
        // to be outside the lock scope
        if (completed != null) {
            final long timestamp = completed.getTimestamp();
    
            for (ExecutionVertex ev : tasksToCommitTo) {
                Execution ee = ev.getCurrentExecutionAttempt();
                if (ee != null) {
                    ExecutionAttemptID attemptId = ee.getAttemptId();
                    NotifyCheckpointComplete notifyMessage = new NotifyCheckpointComplete(job, attemptId, checkpointId, timestamp);
                    ev.sendMessageToCurrentExecution(notifyMessage, ee.getAttemptId()); //通知每个ExecutionVertex,checkpoint完成
                }
            }
    
            statsTracker.onCompletedCheckpoint(completed);
        }
    
        return isPendingCheckpoint;
    }

     

    PendingCheckpoint

    在acknowledgeTask中,

    只是把state,cache在collectedStates中,

    public boolean acknowledgeTask(
            ExecutionAttemptID attemptID,
            SerializedValue<StateHandle<?>> state,
            long stateSize) {
    
        synchronized (lock) {
            if (discarded) {
                return false;
            }
            
            ExecutionVertex vertex = notYetAcknowledgedTasks.remove(attemptID);
            if (vertex != null) {
                if (state != null) {
                    collectedStates.add(new StateForTask(
                            state,
                            stateSize,
                            vertex.getJobvertexId(),
                            vertex.getParallelSubtaskIndex(),
                            System.currentTimeMillis() - checkpointTimestamp));
                }
                numAcknowledgedTasks++;
                return true;
            }
            else {
                return false;
            }
        }
    }

     

    接着在收到所有的task的ack后,会调用toCompletedCheckpoint

    public CompletedCheckpoint toCompletedCheckpoint() {
        synchronized (lock) {
            if (discarded) {
                throw new IllegalStateException("pending checkpoint is discarded");
            }
            if (notYetAcknowledgedTasks.isEmpty()) {
                CompletedCheckpoint completed =  new CompletedCheckpoint(jobId, checkpointId,
                        checkpointTimestamp, System.currentTimeMillis(), new ArrayList<StateForTask>(collectedStates));
                dispose(null, false);
                
                return completed;
            }
            else {
                throw new IllegalStateException("Cannot complete checkpoint while not all tasks are acknowledged");
            }
        }
    }

    把collectedStates封装在CompletedCheckpoint中,返回

     

    最后调用completedCheckpointStore.addCheckpoint,存储这个checkpoint,可以参考

    ZooKeeperCompletedCheckpointStore

     

    NotifyCheckpointComplete

    通用这个NotifyCheckpointComplete,也最到TaskManager,Task,最终调到StreamTask.notifyCheckpointComplete

    @Override
    public void notifyCheckpointComplete(long checkpointId) throws Exception {
        synchronized (lock) {
            if (isRunning) {
                LOG.debug("Notification of complete checkpoint for task {}", getName());
                
                // We first notify the state backend if necessary
                if (stateBackend instanceof CheckpointNotifier) {
                    ((CheckpointNotifier) stateBackend).notifyCheckpointComplete(checkpointId);
                }
                
                for (StreamOperator<?> operator : operatorChain.getAllOperators()) {
                    if (operator != null) {
                        operator.notifyOfCompletedCheckpoint(checkpointId);
                    }
                }
            }
            else {
                LOG.debug("Ignoring notification of complete checkpoint for not-running task {}", getName());
            }
        }
    }

    这个就是checkpoint的完整的过程

     

    再看看restore的过程

     

    Restore过程

    可以看到,在提交job的时候,会调用

    executionGraph.restoreLatestCheckpointedState()

    /**
     * Restores the latest checkpointed state.
     *
     * <p>The recovery of checkpoints might block. Make sure that calls to this method don't
     * block the job manager actor and run asynchronously.
     * 
     */
    public void restoreLatestCheckpointedState() throws Exception {
        synchronized (progressLock) {
            if (checkpointCoordinator != null) {
                checkpointCoordinator.restoreLatestCheckpointedState(getAllVertices(), false, false);
            }
        }
    }

     

    restoreLatestCheckpointedState

    public void restoreLatestCheckpointedState(
            Map<JobVertexID, ExecutionJobVertex> tasks,
            boolean errorIfNoCheckpoint,
            boolean allOrNothingState) throws Exception {
    
        synchronized (lock) {
    
            // Recover the checkpoints
            //对于ZooKeeperCompletedCheckpointStore,
            //Gets the latest checkpoint from ZooKeeper and removes all others.
            completedCheckpointStore.recover();
            // restore from the latest checkpoint
            CompletedCheckpoint latest = completedCheckpointStore.getLatestCheckpoint(); //从completedCheckpointStore中取出最新的CompletedCheckpoint
    
            long recoveryTimestamp = System.currentTimeMillis();
    
            if (allOrNothingState) { //全部成功或Nothing
                Map<ExecutionJobVertex, Integer> stateCounts = new HashMap<ExecutionJobVertex, Integer>();
    
                for (StateForTask state : latest.getStates()) {
                    ExecutionJobVertex vertex = tasks.get(state.getOperatorId());
                    Execution exec = vertex.getTaskVertices()[state.getSubtask()].getCurrentExecutionAttempt();
                    exec.setInitialState(state.getState(), recoveryTimestamp); //恢复state
    
                    Integer count = stateCounts.get(vertex); //计数
                    if (count != null) {
                        stateCounts.put(vertex, count+1);
                    } else {
                        stateCounts.put(vertex, 1);
                    }
                }
    
                // validate that either all task vertices have state, or none
                for (Map.Entry<ExecutionJobVertex, Integer> entry : stateCounts.entrySet()) {
                    ExecutionJobVertex vertex = entry.getKey();
                    if (entry.getValue() != vertex.getParallelism()) { //如果vetex的恢复state次数不等于平行数,说明有些没有被恢复,抛异常
                        throw new IllegalStateException(
                                "The checkpoint contained state only for a subset of tasks for vertex " + vertex);
                    }
                }
            }
            else {
                for (StateForTask state : latest.getStates()) {
                    ExecutionJobVertex vertex = tasks.get(state.getOperatorId());
                    Execution exec = vertex.getTaskVertices()[state.getSubtask()].getCurrentExecutionAttempt();
                    exec.setInitialState(state.getState(), recoveryTimestamp);
                }
            }
        }
    }

     

    Execution

    public void setInitialState(SerializedValue<StateHandle<?>> initialState, long recoveryTimestamp) {
        if (state != ExecutionState.CREATED) {
            throw new IllegalArgumentException("Can only assign operator state when execution attempt is in CREATED");
        }
        this.operatorState = initialState;
        this.recoveryTimestamp = recoveryTimestamp;
    }

    可以看到这里的recovery,只是把我们从zk中获取的checkpoint中的状态赋值给operatorState

    然后再deployToSlot,会把初始state,封装到deployment中去,提交给taskManager

    public void deployToSlot(final SimpleSlot slot) throws JobException {
        final TaskDeploymentDescriptor deployment = vertex.createDeploymentDescriptor(attemptId, slot, operatorState, recoveryTimestamp, attemptNumber);
        final Future<Object> deployAction = gateway.ask(new SubmitTask(deployment), timeout);
    }

     

    在TaskManager中的submitTask里面,会创建Task,并执行该task,

     

    Task.run()

    // the very last thing before the actual execution starts running is to inject
    // the state into the task. the state is non-empty if this is an execution
    // of a task that failed but had backuped state from a checkpoint
    
    // get our private reference onto the stack (be safe against concurrent changes) 
    SerializedValue<StateHandle<?>> operatorState = this.operatorState; //恢复的state
    long recoveryTs = this.recoveryTs;
    
    if (operatorState != null) {
        if (invokable instanceof StatefulTask) { //如果是一个有状态的task
            try {
                StateHandle<?> state = operatorState.deserializeValue(userCodeClassLoader); //反序列化数据
                StatefulTask<?> op = (StatefulTask<?>) invokable;
                StateUtils.setOperatorState(op, state, recoveryTs);//真正的恢复state
            }
            catch (Exception e) {
                throw new RuntimeException("Failed to deserialize state handle and setup initial operator state.", e);
            }
        }
        else {
            throw new IllegalStateException("Found operator state for a non-stateful task invokable");
        }
    }
    
    // be memory and GC friendly - since the code stays in invoke() for a potentially long time,
    // we clear the reference to the state handle
    //noinspection UnusedAssignment
    operatorState = null;
    this.operatorState = null;
     

    StateUtils

    public static <T extends StateHandle<?>> void setOperatorState(StatefulTask<?> op,
            StateHandle<?> state, long recoveryTimestamp) throws Exception {
        @SuppressWarnings("unchecked")
        StatefulTask<T> typedOp = (StatefulTask<T>) op;
        @SuppressWarnings("unchecked")
        T typedHandle = (T) state;
    
        typedOp.setInitialState(typedHandle, recoveryTimestamp);
    }

     

    StreamTask

    @Override
    public void setInitialState(StreamTaskStateList initialState, long recoveryTimestamp) {
        lazyRestoreState = initialState; //将状态置到lazyRestoreState
        this.recoveryTimestamp = recoveryTimestamp;
    }
    
    //在StreamTask的invoke中,会调用restoreStateLazy,真正的做状态恢复
    public void restoreStateLazy() throws Exception {
        if (lazyRestoreState != null) {
            
            try {
                final StreamOperator<?>[] allOperators = operatorChain.getAllOperators();
                final StreamTaskState[] states = lazyRestoreState.getState(userClassLoader); //获取所有states
                
                // be GC friendly
                lazyRestoreState = null;
                
                for (int i = 0; i < states.length; i++) {
                    StreamTaskState state = states[i];
                    StreamOperator<?> operator = allOperators[i];
                    
                    if (state != null && operator != null) {
                        operator.restoreState(state, recoveryTimestamp); //最终把state恢复到operator
                    }
                    else if (operator != null) {
                    
                    }
                }
            }
            catch (Exception e) {
                throw new Exception("Could not restore checkpointed state to operators and functions", e);
            }
        }
    }
  • 相关阅读:
    NewWords/13001400
    UIWebView加载Js以及Css文件
    驾校错题集合
    NewWords/15001600
    javascript动态添加、修改、删除对象的属性和方法
    NewWords/12001300
    NewWords/11001200
    NewWords/16001700
    NewWords/14001500
    JS与iOS之间的通信
  • 原文地址:https://www.cnblogs.com/fxjwind/p/6079655.html
Copyright © 2020-2023  润新知