1. 遍历问题 Preorder / Inorder / Postorder
preorder: root left right
inorder: left root right
postorder: left right root
遇到二叉树的问题,就是一步步的拆分,最常用的就是Divide & Conquer的递归实现
贴一个preorder的例子
Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param root: The root of binary tree. @return: Preorder in ArrayList which contains node values. """ def preorderTraversal(self, root): result = [] if root is None: return result result = [root.val] + self.preorderTraversal(root.left) + self.preorderTraversal(root.right) return result
贴一个代码
""" Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param root: The root of binary tree. @return: An integer """ def maxDepth(self, root): depth = 0 if root is None: return depth depth = max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1 return depth
3. 继续进行延伸,在Balanced binary tree 的做法中可以应用 maxDepth的解法
判断是否是balanced binary tree最直观的就是左右子树的高度差,对任意一个点来说的话 left - right > 1 则不是balanced
""" Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param root: The root of binary tree. @return: True if this Binary tree is Balanced, or false. """ def maxDepth(self, root): if root is None: return 0 left = self.maxDepth(root.left) right = self.maxDepth(root.right) # at first, the abs is ignored and the operations when the maxdepth is calculated is wrong if left == -1 or right == -1 or abs(left - right) > 1: return -1 return max(left, right) + 1 def isBalanced(self, root): if root is None: return True return self.maxDepth(root) != -1