• Spark机器学习基础三


    监督学习

    0.线性回归(加L1、L2正则化)

    from __future__ import print_function
    from pyspark.ml.regression import LinearRegression
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("LinearRegressionWithElasticNet")
        .getOrCreate()
    
    # 加载数据
    training = spark.read.format("libsvm").load("sample_linear_regression_data.txt")
    
    # 线性回归
    lr = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
    
    # 拟合模型
    lrModel = lr.fit(training)
    
    # 输出系数和截距
    print("Coefficients: %s" % str(lrModel.coefficients))
    print("Intercept: %s" % str(lrModel.intercept))
    
    # 模型信息总结输出
    trainingSummary = lrModel.summary
    print("numIterations: %d" % trainingSummary.totalIterations)
    print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
    trainingSummary.residuals.show()
    print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
    print("r2: %f" % trainingSummary.r2)
    
    spark.stop()
    
    Coefficients: [0.0,0.32292516677405936,-0.3438548034562218,1.9156017023458414,0.05288058680386263,0.765962720459771,0.0,-0.15105392669186682,-0.21587930360904642,0.22025369188813426]
    Intercept: 0.1598936844239736
    numIterations: 7
    objectiveHistory: [0.49999999999999994, 0.4967620357443381, 0.4936361664340463, 0.4936351537897608, 0.4936351214177871, 0.49363512062528014, 0.4936351206216114]
    +--------------------+
    |           residuals|
    +--------------------+
    |  -9.889232683103197|
    |  0.5533794340053554|
    |  -5.204019455758823|
    | -20.566686715507508|
    |    -9.4497405180564|
    |  -6.909112502719486|
    |  -10.00431602969873|
    |   2.062397807050484|
    |  3.1117508432954772|
    | -15.893608229419382|
    |  -5.036284254673026|
    |   6.483215876994333|
    |  12.429497299109002|
    |  -20.32003219007654|
    | -2.0049838218725005|
    | -17.867901734183793|
    |   7.646455887420495|
    | -2.2653482182417406|
    |-0.10308920436195645|
    |  -1.380034070385301|
    +--------------------+
    only showing top 20 rows
    
    RMSE: 10.189077
    r2: 0.022861
    

    1.广义线性模型

    from __future__ import print_function
    from pyspark.sql import SparkSession
    from pyspark.ml.regression import GeneralizedLinearRegression
    
    
    spark = SparkSession
        .builder
        .appName("GeneralizedLinearRegressionExample")
        .getOrCreate()
    
    # 加载数据
    dataset = spark.read.format("libsvm").load("sample_linear_regression_data.txt")
    
    # 广义线性模型
    glr = GeneralizedLinearRegression(family="gaussian", link="identity", maxIter=10, regParam=0.3)
    
    # 拟合模型
    model = glr.fit(dataset)
    
    # 输出系数和截距
    print("Coefficients: " + str(model.coefficients))
    print("Intercept: " + str(model.intercept))
    
    # 模型信息总结与输出
    summary = model.summary
    print("Coefficient Standard Errors: " + str(summary.coefficientStandardErrors))
    print("T Values: " + str(summary.tValues))
    print("P Values: " + str(summary.pValues))
    print("Dispersion: " + str(summary.dispersion))
    print("Null Deviance: " + str(summary.nullDeviance))
    print("Residual Degree Of Freedom Null: " + str(summary.residualDegreeOfFreedomNull))
    print("Deviance: " + str(summary.deviance))
    print("Residual Degree Of Freedom: " + str(summary.residualDegreeOfFreedom))
    print("AIC: " + str(summary.aic))
    print("Deviance Residuals: ")
    summary.residuals().show()
    
    spark.stop()
    
    Coefficients: [0.010541828081257216,0.8003253100560949,-0.7845165541420371,2.3679887171421914,0.5010002089857577,1.1222351159753026,-0.2926824398623296,-0.49837174323213035,-0.6035797180675657,0.6725550067187461]
    Intercept: 0.14592176145232041
    Coefficient Standard Errors: [0.7950428434287478, 0.8049713176546897, 0.7975916824772489, 0.8312649247659919, 0.7945436200517938, 0.8118992572197593, 0.7919506385542777, 0.7973378214726764, 0.8300714999626418, 0.7771333489686802, 0.463930109648428]
    T Values: [0.013259446542269243, 0.9942283563442594, -0.9836067393599172, 2.848657084633759, 0.6305509179635714, 1.382234441029355, -0.3695715687490668, -0.6250446546128238, -0.7271418403049983, 0.8654306337661122, 0.31453393176593286]
    P Values: [0.989426199114056, 0.32060241580811044, 0.3257943227369877, 0.004575078538306521, 0.5286281628105467, 0.16752945248679119, 0.7118614002322872, 0.5322327097421431, 0.467486325282384, 0.3872259825794293, 0.753249430501097]
    Dispersion: 105.60988356821714
    Null Deviance: 53229.3654338832
    Residual Degree Of Freedom Null: 500
    Deviance: 51748.8429484264
    Residual Degree Of Freedom: 490
    AIC: 3769.1895871765314
    Deviance Residuals: 
    +-------------------+
    |  devianceResiduals|
    +-------------------+
    |-10.974359174246889|
    | 0.8872320138420559|
    | -4.596541837478908|
    |-20.411667435019638|
    |-10.270419345342642|
    |-6.0156058956799905|
    |-10.663939415849267|
    | 2.1153960525024713|
    | 3.9807132379137675|
    |-17.225218272069533|
    | -4.611647633532147|
    | 6.4176669407698546|
    | 11.407137945300537|
    | -20.70176540467664|
    | -2.683748540510967|
    |-16.755494794232536|
    |  8.154668342638725|
    |-1.4355057987358848|
    |-0.6435058688185704|
    |  -1.13802589316832|
    +-------------------+
    only showing top 20 rows
    

    2.逻辑回归

    from __future__ import print_function
    from pyspark.ml.classification import LogisticRegression
    from pyspark.sql import SparkSession
    
    spark = SparkSession 
        .builder 
        .appName("LogisticRegressionSummary") 
        .getOrCreate()
    
    # 加载数据
    training = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # 逻辑回归
    lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
    
    # 拟合模型
    lrModel = lr.fit(training)
    
    # 模型信息总结与输出
    trainingSummary = lrModel.summary
    
    # 输出每一轮的损失函数值
    objectiveHistory = trainingSummary.objectiveHistory
    print("objectiveHistory:")
    for objective in objectiveHistory:
        print(objective)
    
    # ROC曲线
    trainingSummary.roc.show()
    print("areaUnderROC: " + str(trainingSummary.areaUnderROC))
    
    # Set the model threshold to maximize F-Measure
    #fMeasure = trainingSummary.fMeasureByThreshold
    #maxFMeasure = fMeasure.groupBy(['threshold']).max('F-Measure').select('max(F-Measure)')
    #bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure.select('max(F-Measure)')['max(F-Measure)']).select('threshold')['threshold']
    #lr.setThreshold(bestThreshold)
    
    spark.stop()
    
    objectiveHistory:
    0.6833149135741672
    0.6662875751473734
    0.6217068546034618
    0.6127265245887887
    0.6060347986802873
    0.6031750687571562
    0.5969621534836274
    0.5940743031983118
    0.5906089243339022
    0.5894724576491042
    0.5882187775729587
    +---+--------------------+
    |FPR|                 TPR|
    +---+--------------------+
    |0.0|                 0.0|
    |0.0|0.017543859649122806|
    |0.0| 0.03508771929824561|
    |0.0| 0.05263157894736842|
    |0.0| 0.07017543859649122|
    |0.0| 0.08771929824561403|
    |0.0| 0.10526315789473684|
    |0.0| 0.12280701754385964|
    |0.0| 0.14035087719298245|
    |0.0| 0.15789473684210525|
    |0.0| 0.17543859649122806|
    |0.0| 0.19298245614035087|
    |0.0| 0.21052631578947367|
    |0.0| 0.22807017543859648|
    |0.0| 0.24561403508771928|
    |0.0|  0.2631578947368421|
    |0.0|  0.2807017543859649|
    |0.0|  0.2982456140350877|
    |0.0|  0.3157894736842105|
    |0.0|  0.3333333333333333|
    +---+--------------------+
    only showing top 20 rows
    
    areaUnderROC: 1.0
    
    from __future__ import print_function
    from pyspark.ml.classification import LogisticRegression
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("LogisticRegressionWithElasticNet")
        .getOrCreate()
    
    # 加载数据
    training = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # 逻辑回归
    lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
    
    # 拟合模型
    lrModel = lr.fit(training)
    
    # 系数与截距
    print("Coefficients: " + str(lrModel.coefficients))
    print("Intercept: " + str(lrModel.intercept))
    
    # 多项式逻辑回归
    mlr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8, family="multinomial")
    
    # 拟合模型
    mlrModel = mlr.fit(training)
    
    # 输出系数
    print("Multinomial coefficients: " + str(mlrModel.coefficientMatrix))
    print("Multinomial intercepts: " + str(mlrModel.interceptVector))
    
    spark.stop()
    
    Coefficients: (692,[244,263,272,300,301,328,350,351,378,379,405,406,407,428,433,434,455,456,461,462,483,484,489,490,496,511,512,517,539,540,568],[-7.353983524188197e-05,-9.102738505589466e-05,-0.00019467430546904298,-0.00020300642473486668,-3.1476183314863995e-05,-6.842977602660743e-05,1.5883626898239883e-05,1.4023497091372047e-05,0.00035432047524968605,0.00011443272898171087,0.00010016712383666666,0.0006014109303795481,0.0002840248179122762,-0.00011541084736508837,0.000385996886312906,0.000635019557424107,-0.00011506412384575676,-0.00015271865864986808,0.0002804933808994214,0.0006070117471191634,-0.0002008459663247437,-0.0001421075579290126,0.0002739010341160883,0.00027730456244968115,-9.838027027269332e-05,-0.0003808522443517704,-0.00025315198008555033,0.00027747714770754307,-0.0002443619763919199,-0.0015394744687597765,-0.00023073328411331293])
    Intercept: 0.22456315961250325
    Multinomial coefficients: 2 X 692 CSRMatrix
    (0,244) 0.0
    (0,263) 0.0001
    (0,272) 0.0001
    (0,300) 0.0001
    (0,350) -0.0
    (0,351) -0.0
    (0,378) -0.0
    (0,379) -0.0
    (0,405) -0.0
    (0,406) -0.0006
    (0,407) -0.0001
    (0,428) 0.0001
    (0,433) -0.0
    (0,434) -0.0007
    (0,455) 0.0001
    (0,456) 0.0001
    ..
    ..
    Multinomial intercepts: [-0.12065879445860686,0.12065879445860686]
    

    3.多分类逻辑回归

    from __future__ import print_function
    from pyspark.ml.classification import LogisticRegression
    from pyspark.sql import SparkSession
    
    spark = SparkSession 
        .builder 
        .appName("MulticlassLogisticRegressionWithElasticNet") 
        .getOrCreate()
    
    # 加载数据
    training = spark 
        .read 
        .format("libsvm") 
        .load("sample_multiclass_classification_data.txt")
    
    # 多分类逻辑回归
    lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
    
    # 拟合模型
    lrModel = lr.fit(training)
    
    # 输出系数
    print("Coefficients: 
    " + str(lrModel.coefficientMatrix))
    print("Intercept: " + str(lrModel.interceptVector))
    
    # 预测结果
    lrModel.transform(training).show()
    
    spark.stop()
    
    Coefficients: 
    3 X 4 CSRMatrix
    (0,3) 0.3176
    (1,2) -0.7804
    (1,3) -0.377
    Intercept: [0.05165231659832854,-0.12391224990853622,0.07225993331020768]
    +-----+--------------------+--------------------+--------------------+----------+
    |label|            features|       rawPrediction|         probability|prediction|
    +-----+--------------------+--------------------+--------------------+----------+
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2130545101220...|[0.19824091021950...|       1.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2395254151479...|[0.18250386256254...|       1.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2130545101220...|[0.18980556250236...|       1.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2395254151479...|[0.19632523546632...|       1.0|
    |  0.0|(4,[0,1,2,3],[0.1...|[0.21047647616023...|[0.43750398183438...|       0.0|
    |  1.0|(4,[0,2,3],[-0.83...|[-0.2395254151479...|[0.18250386256254...|       1.0|
    |  2.0|(4,[0,1,2,3],[-1....|[0.07812299927036...|[0.37581775428218...|       0.0|
    |  2.0|(4,[0,1,2,3],[-1....|[0.05165230377890...|[0.35102739153795...|       2.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2659960025254...|[0.17808226409449...|       1.0|
    |  0.0|(4,[0,2,3],[0.611...|[0.18400588878268...|[0.44258017540583...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.2...|[0.23694706353777...|[0.44442301486604...|       0.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2659960025254...|[0.17539206930356...|       1.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-0.2395254151479...|[0.18250386256254...|       1.0|
    |  2.0|(4,[0,1,2,3],[-0....|[0.05165230377890...|[0.35371124645092...|       2.0|
    |  2.0|(4,[0,1,2,3],[-0....|[-0.0277597631826...|[0.32360705108265...|       2.0|
    |  2.0|(4,[0,1,2,3],[-0....|[0.02518163392628...|[0.33909561029444...|       2.0|
    |  1.0|(4,[0,2,3],[-0.94...|[-0.2395254151479...|[0.17976563656243...|       1.0|
    |  2.0|(4,[0,1,2,3],[-0....|[-0.0012891758050...|[0.32994371314262...|       2.0|
    |  0.0|(4,[0,1,2,3],[0.1...|[0.10459380900173...|[0.39691355784123...|       0.0|
    |  2.0|(4,[0,1,2,3],[-0....|[0.02518163392628...|[0.34718685710751...|       2.0|
    +-----+--------------------+--------------------+--------------------+----------+
    only showing top 20 rows
    

    4.多层感知器(MLP)

    from __future__ import print_function
    from pyspark.ml.classification import MultilayerPerceptronClassifier
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder.appName("multilayer_perceptron_classification_example").getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_multiclass_classification_data.txt")
    
    # 切分训练集和测试集
    splits = data.randomSplit([0.6, 0.4], 1234)
    train = splits[0]
    test = splits[1]
    
    # 输入、隐层、隐层、输出个数
    layers = [4, 5, 4, 3]
    
    # 创建多层感知器
    trainer = MultilayerPerceptronClassifier(maxIter=100, layers=layers, blockSize=128, seed=1234)
    
    # 训练模型
    model = trainer.fit(train)
    
    # 预测和计算准确度
    result = model.transform(test)
    result.show()
    predictionAndLabels = result.select("prediction", "label")
    evaluator = MulticlassClassificationEvaluator(metricName="accuracy")
    print("Test set accuracy = " + str(evaluator.evaluate(predictionAndLabels)))
    
    spark.stop()
    
    +-----+--------------------+--------------------+--------------------+----------+
    |label|            features|       rawPrediction|         probability|prediction|
    +-----+--------------------+--------------------+--------------------+----------+
    |  0.0|(4,[0,1,2,3],[-0....|[-29.588369001638...|[2.63020383878084...|       2.0|
    |  0.0|(4,[0,1,2,3],[-0....|[125.657894478296...|[1.0,1.4484875476...|       0.0|
    |  0.0|(4,[0,1,2,3],[-0....|[126.190155254739...|[1.0,5.1578089761...|       0.0|
    |  0.0|(4,[0,1,2,3],[-0....|[-26.984478255346...|[4.23003198458660...|       2.0|
    |  0.0|(4,[0,1,2,3],[-0....|[-29.588369001638...|[2.63020383878084...|       2.0|
    |  0.0|(4,[0,1,2,3],[-1....|[-29.588368732563...|[2.63020459374897...|       2.0|
    |  0.0|(4,[0,1,2,3],[0.1...|[126.190175711705...|[1.0,5.1572549882...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.2...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.3...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.3...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.3...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.4...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.5...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.7...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[0.8...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,1,2,3],[1.0...|[126.190175994592...|[1.0,5.1572473278...|       0.0|
    |  0.0|(4,[0,2,3],[0.166...|[126.190175994583...|[1.0,5.1572473280...|       0.0|
    |  0.0|(4,[0,2,3],[0.388...|[126.190175994586...|[1.0,5.1572473280...|       0.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-122.71364090590...|[1.47439846164393...|       1.0|
    |  1.0|(4,[0,1,2,3],[-0....|[-122.71364090590...|[1.47439846164393...|       1.0|
    +-----+--------------------+--------------------+--------------------+----------+
    only showing top 20 rows
    
    Test set accuracy = 0.9019607843137255
    

    5.决策树分类

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.classification import DecisionTreeClassifier
    from pyspark.ml.feature import StringIndexer, VectorIndexer
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("DecisionTreeClassificationExample")
        .getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # 将分类值转换为类别索引
    labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
    
    # 用于为向量数据集中的分类特征列建立索引
    featureIndexer = VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
    
    # 将数据划分为培训和测试集
    (trainingData, testData) = data.randomSplit([0.7, 0.3])
    
    # 训练决策树模型
    dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")
    
    # Chain indexers and tree in a Pipeline
    pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt])
    
    # Train model.  This also runs the indexers.
    model = pipeline.fit(trainingData)
    
    # Make predictions.
    predictions = model.transform(testData)
    
    # Select example rows to display.
    predictions.select("prediction", "indexedLabel", "features").show(5)
    
    # Select (prediction, true label) and compute test error
    evaluator = MulticlassClassificationEvaluator(labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print("Test Error = %g " % (1.0 - accuracy))
    
    treeModel = model.stages[2]
    # summary only
    print(treeModel)
    
    spark.stop()
    
    +----------+------------+--------------------+
    |prediction|indexedLabel|            features|
    +----------+------------+--------------------+
    |       1.0|         1.0|(692,[95,96,97,12...|
    |       1.0|         1.0|(692,[98,99,100,1...|
    |       1.0|         1.0|(692,[123,124,125...|
    |       1.0|         1.0|(692,[124,125,126...|
    |       1.0|         1.0|(692,[124,125,126...|
    +----------+------------+--------------------+
    only showing top 5 rows
    
    Test Error = 0.0833333 
    DecisionTreeClassificationModel (uid=DecisionTreeClassifier_e2935d804502) of depth 1 with 3 nodes
    

    6.决策树回归

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.regression import DecisionTreeRegressor
    from pyspark.ml.feature import VectorIndexer
    from pyspark.ml.evaluation import RegressionEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("DecisionTreeRegressionExample")
        .getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # Automatically identify categorical features, and index them.
    # We specify maxCategories so features with > 4 distinct values are treated as continuous.
    featureIndexer = VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
    
    # Split the data into training and test sets (30% held out for testing)
    (trainingData, testData) = data.randomSplit([0.7, 0.3])
    
    # Train a DecisionTree model.
    dt = DecisionTreeRegressor(featuresCol="indexedFeatures")
    
    # Chain indexer and tree in a Pipeline
    pipeline = Pipeline(stages=[featureIndexer, dt])
    
    # Train model.  This also runs the indexer.
    model = pipeline.fit(trainingData)
    
    # Make predictions.
    predictions = model.transform(testData)
    
    # Select example rows to display.
    predictions.select("prediction", "label", "features").show(5)
    
    # Select (prediction, true label) and compute test error
    evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
    rmse = evaluator.evaluate(predictions)
    print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
    
    treeModel = model.stages[1]
    # summary only
    print(treeModel)
    
    spark.stop()
    
    +----------+-----+--------------------+
    |prediction|label|            features|
    +----------+-----+--------------------+
    |       0.0|  0.0|(692,[95,96,97,12...|
    |       0.0|  0.0|(692,[98,99,100,1...|
    |       0.0|  0.0|(692,[122,123,124...|
    |       0.0|  0.0|(692,[123,124,125...|
    |       0.0|  0.0|(692,[124,125,126...|
    +----------+-----+--------------------+
    only showing top 5 rows
    
    Root Mean Squared Error (RMSE) on test data = 0.179605
    DecisionTreeRegressionModel (uid=DecisionTreeRegressor_3c2c5981fa9b) of depth 1 with 3 nodes
    

    7.随机森林分类

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.classification import RandomForestClassifier
    from pyspark.ml.feature import IndexToString, StringIndexer, VectorIndexer
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("RandomForestClassifierExample")
        .getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # Index labels, adding metadata to the label column.
    # Fit on whole dataset to include all labels in index.
    labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
    
    # Automatically identify categorical features, and index them.
    # Set maxCategories so features with > 4 distinct values are treated as continuous.
    featureIndexer = VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
    
    # Split the data into training and test sets (30% held out for testing)
    (trainingData, testData) = data.randomSplit([0.7, 0.3])
    
    # Train a RandomForest model.
    rf = RandomForestClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", numTrees=10)
    
    # Convert indexed labels back to original labels.
    labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",labels=labelIndexer.labels)
    
    # Chain indexers and forest in a Pipeline
    pipeline = Pipeline(stages=[labelIndexer, featureIndexer, rf, labelConverter])
    
    # Train model.  This also runs the indexers.
    model = pipeline.fit(trainingData)
    
    # Make predictions.
    predictions = model.transform(testData)
    
    # Select example rows to display.
    predictions.select("predictedLabel", "label", "features").show(5)
    
    # Select (prediction, true label) and compute test error
    evaluator = MulticlassClassificationEvaluator(labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print("Test Error = %g" % (1.0 - accuracy))
    
    rfModel = model.stages[2]
    print(rfModel)  # summary only
    
    spark.stop()
    
    +--------------+-----+--------------------+
    |predictedLabel|label|            features|
    +--------------+-----+--------------------+
    |           0.0|  0.0|(692,[122,123,124...|
    |           0.0|  0.0|(692,[123,124,125...|
    |           0.0|  0.0|(692,[124,125,126...|
    |           0.0|  0.0|(692,[126,127,128...|
    |           0.0|  0.0|(692,[126,127,128...|
    +--------------+-----+--------------------+
    only showing top 5 rows
    
    Test Error = 0.0344828
    RandomForestClassificationModel (uid=RandomForestClassifier_5669b6efb44b) with 10 trees
    

    8.随机森林回归

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.regression import RandomForestRegressor
    from pyspark.ml.feature import VectorIndexer
    from pyspark.ml.evaluation import RegressionEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("RandomForestRegressorExample")
        .getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # Automatically identify categorical features, and index them.
    # Set maxCategories so features with > 4 distinct values are treated as continuous.
    featureIndexer = VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
    
    # Split the data into training and test sets (30% held out for testing)
    (trainingData, testData) = data.randomSplit([0.7, 0.3])
    
    # Train a RandomForest model.
    rf = RandomForestRegressor(featuresCol="indexedFeatures")
    
    # Chain indexer and forest in a Pipeline
    pipeline = Pipeline(stages=[featureIndexer, rf])
    
    # Train model.  This also runs the indexer.
    model = pipeline.fit(trainingData)
    
    # Make predictions.
    predictions = model.transform(testData)
    
    # Select example rows to display.
    predictions.select("prediction", "label", "features").show(5)
    
    # Select (prediction, true label) and compute test error
    evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
    rmse = evaluator.evaluate(predictions)
    print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
    
    rfModel = model.stages[1]
    print(rfModel)  # summary only
    
    spark.stop()
    
    +----------+-----+--------------------+
    |prediction|label|            features|
    +----------+-----+--------------------+
    |      0.05|  0.0|(692,[95,96,97,12...|
    |       0.0|  0.0|(692,[98,99,100,1...|
    |      0.05|  0.0|(692,[123,124,125...|
    |       0.0|  0.0|(692,[124,125,126...|
    |      0.05|  0.0|(692,[124,125,126...|
    +----------+-----+--------------------+
    only showing top 5 rows
    
    Root Mean Squared Error (RMSE) on test data = 0.111163
    RandomForestRegressionModel (uid=RandomForestRegressor_d557129aa0ea) with 20 trees
    

    9.梯度增强树分类

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.classification import GBTClassifier
    from pyspark.ml.feature import StringIndexer, VectorIndexer
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("GradientBoostedTreeClassifierExample")
        .getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # Index labels, adding metadata to the label column.
    # Fit on whole dataset to include all labels in index.
    labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
    # Automatically identify categorical features, and index them.
    # Set maxCategories so features with > 4 distinct values are treated as continuous.
    featureIndexer = VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
    
    # Split the data into training and test sets (30% held out for testing)
    (trainingData, testData) = data.randomSplit([0.7, 0.3])
    
    # Train a GBT model.
    gbt = GBTClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", maxIter=10)
    
    # Chain indexers and GBT in a Pipeline
    pipeline = Pipeline(stages=[labelIndexer, featureIndexer, gbt])
    
    # Train model.  This also runs the indexers.
    model = pipeline.fit(trainingData)
    
    # Make predictions.
    predictions = model.transform(testData)
    
    # Select example rows to display.
    predictions.select("prediction", "indexedLabel", "features").show(5)
    
    # Select (prediction, true label) and compute test error
    evaluator = MulticlassClassificationEvaluator(labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print("Test Error = %g" % (1.0 - accuracy))
    
    gbtModel = model.stages[2]
    print(gbtModel)  # summary only
    
    spark.stop()
    
    +----------+------------+--------------------+
    |prediction|indexedLabel|            features|
    +----------+------------+--------------------+
    |       1.0|         1.0|(692,[95,96,97,12...|
    |       1.0|         1.0|(692,[100,101,102...|
    |       1.0|         1.0|(692,[122,123,124...|
    |       1.0|         1.0|(692,[123,124,125...|
    |       1.0|         1.0|(692,[124,125,126...|
    +----------+------------+--------------------+
    only showing top 5 rows
    
    Test Error = 0.125
    GBTClassificationModel (uid=GBTClassifier_4a28928cccd2) with 10 trees
    

    10.梯度增强树回归

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.regression import GBTRegressor
    from pyspark.ml.feature import VectorIndexer
    from pyspark.ml.evaluation import RegressionEvaluator
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("GradientBoostedTreeRegressorExample")
        .getOrCreate()
    
    # 加载数据
    data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
    
    # Automatically identify categorical features, and index them.
    # Set maxCategories so features with > 4 distinct values are treated as continuous.
    featureIndexer = VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
    
    # Split the data into training and test sets (30% held out for testing)
    (trainingData, testData) = data.randomSplit([0.7, 0.3])
    
    # Train a GBT model.
    gbt = GBTRegressor(featuresCol="indexedFeatures", maxIter=10)
    
    # Chain indexer and GBT in a Pipeline
    pipeline = Pipeline(stages=[featureIndexer, gbt])
    
    # Train model.  This also runs the indexer.
    model = pipeline.fit(trainingData)
    
    # Make predictions.
    predictions = model.transform(testData)
    
    # Select example rows to display.
    predictions.select("prediction", "label", "features").show(5)
    
    # Select (prediction, true label) and compute test error
    evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
    rmse = evaluator.evaluate(predictions)
    print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
    
    gbtModel = model.stages[1]
    print(gbtModel)  # summary only
    
    spark.stop()
    
    +----------+-----+--------------------+
    |prediction|label|            features|
    +----------+-----+--------------------+
    |       1.0|  0.0|(692,[98,99,100,1...|
    |       0.0|  0.0|(692,[122,123,124...|
    |       0.0|  0.0|(692,[123,124,125...|
    |       0.0|  0.0|(692,[124,125,126...|
    |       0.0|  0.0|(692,[124,125,126...|
    +----------+-----+--------------------+
    only showing top 5 rows
    
    Root Mean Squared Error (RMSE) on test data = 0.2
    GBTRegressionModel (uid=GBTRegressor_a891b3f3210d) with 10 trees
    

    11.机器学习模板与交叉验证

    from __future__ import print_function
    from pyspark.ml import Pipeline
    from pyspark.ml.classification import LogisticRegression
    from pyspark.ml.evaluation import BinaryClassificationEvaluator
    from pyspark.ml.feature import HashingTF, Tokenizer
    from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
    from pyspark.sql import SparkSession
    
    spark = SparkSession
        .builder
        .appName("CrossValidatorExample")
        .getOrCreate()
    
    # $example on$
    # Prepare training documents, which are labeled.
    training = spark.createDataFrame([
        (0, "a b c d e spark", 1.0),
        (1, "b d", 0.0),
        (2, "spark f g h", 1.0),
        (3, "hadoop mapreduce", 0.0),
        (4, "b spark who", 1.0),
        (5, "g d a y", 0.0),
        (6, "spark fly", 1.0),
        (7, "was mapreduce", 0.0),
        (8, "e spark program", 1.0),
        (9, "a e c l", 0.0),
        (10, "spark compile", 1.0),
        (11, "hadoop software", 0.0)
    ], ["id", "text", "label"])
    
    # Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr.
    tokenizer = Tokenizer(inputCol="text", outputCol="words")
    hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
    lr = LogisticRegression(maxIter=10)
    pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
    
    # We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
    # This will allow us to jointly choose parameters for all Pipeline stages.
    # A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
    # We use a ParamGridBuilder to construct a grid of parameters to search over.
    # With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
    # this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
    paramGrid = ParamGridBuilder() 
        .addGrid(hashingTF.numFeatures, [10, 100, 1000]) 
        .addGrid(lr.regParam, [0.1, 0.01]) 
        .build()
    
    crossval = CrossValidator(estimator=pipeline,
                              estimatorParamMaps=paramGrid,
                              evaluator=BinaryClassificationEvaluator(),
                              numFolds=2)  # use 3+ folds in practice
    
    # Run cross-validation, and choose the best set of parameters.
    cvModel = crossval.fit(training)
    
    # Prepare test documents, which are unlabeled.
    test = spark.createDataFrame([
        (4, "spark i j k"),
        (5, "l m n"),
        (6, "mapreduce spark"),
        (7, "apache hadoop")
    ], ["id", "text"])
    
    # Make predictions on test documents. cvModel uses the best model found (lrModel).
    prediction = cvModel.transform(test)
    selected = prediction.select("id", "text", "probability", "prediction")
    for row in selected.collect():
        print(row)
    
    spark.stop()
    
    Row(id=4, text='spark i j k', probability=DenseVector([0.2581, 0.7419]), prediction=1.0)
    Row(id=5, text='l m n', probability=DenseVector([0.9186, 0.0814]), prediction=0.0)
    Row(id=6, text='mapreduce spark', probability=DenseVector([0.432, 0.568]), prediction=1.0)
    Row(id=7, text='apache hadoop', probability=DenseVector([0.6766, 0.3234]), prediction=0.0)
    
    
    
  • 相关阅读:
    Java8 流式 API(`java.util.stream`)
    Java8 日期与时间 API
    element-ui 开发备忘
    个人作业——软件工程实践总结作业
    【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal
    团队作业第二次——项目选题报告
    结对第二次——文献摘要热词统计及进阶需求
    JAVA 之 static
    将博客搬至CSDN
    修改element ui组件样式的两种方法
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10710952.html
Copyright © 2020-2023  润新知