• JAVA中的Fork/Join框架


    看了下Java Tutorials中的fork/join章节,整理下。

    什么是fork/join框架

      fork/join框架是ExecutorService接口的一个实现,可以帮助开发人员充分利用多核处理器的优势,编写出并行执行的程序,提高应用程序的性能;设计的目的是为了处理那些可以被递归拆分的任务。

      fork/join框架与其它ExecutorService的实现类相似,会给线程池中的线程分发任务,不同之处在于它使用了工作窃取算法,所谓工作窃取,指的是对那些处理完自身任务的线程,会从其它线程窃取任务执行。

      fork/join框架的核心是ForkJoinPool类,该类继承了AbstractExecutorService类。ForkJoinPool实现了工作窃取算法并且能够执行 ForkJoinTask任务。

    基本使用方法

      在使用fork/join框架之前,我们需要先对任务进行分割,任务分割代码应该跟下面的伪代码类似:

    if (任务足够小){
      直接执行该任务;
    }
    else{ 将任务一分为二; 执行这两个任务并等待结果;
    }

      首先,我们会在ForkJoinTask的子类中封装以上代码,不过一般我们会使用更加具体的ForkJoinTask类型,如 RecursiveTask(可以返回一个结果)或RecursiveAction

      当写好ForkJoinTask的子类后,创建该对象,该对象代表了所有需要完成的任务;然后将这个任务对象传给ForkJoinPool实例的invoke()去执行即可。

    例子-图像模糊

      为了更加直观的理解fork/join框架是如何工作的,可以看一下下面这个例子。假定我们有一个图像模糊的任务需要完成,原始图像数据可以用一个整型数组表示,每一个整型元素包含了一个像素点的颜色值(RBG,存放在整型元素的不同位中)。目标图像同样是由一个整型数组构成,每个整型元素包含RBG颜色信息;

      执行模糊操作需要遍历原始图像整型数组的每个元素,并对其周围的像素点做均值操作(RGB均值),然后将结果存放到目标数组中。由于图像是一个大数组,这个处理操作会花费一定的时间。但是有了fork/join框架,我们可以充分利用多核处理器进行并行计算。如下是一个可能的代码实现(图像做水平方向的模糊操作):

    Tips:该例子仅仅是阐述fork/join框架的使用,并不推荐使用该方法做图像模糊,图像边缘处理也没做判断

    public class ForkBlur extends RecursiveAction {
        private static final long serialVersionUID = -8032915917030559798L;
        private int[] mSource;
        private int mStart;
        private int mLength;
        private int[] mDestination;
        private int mBlurWidth = 15; // Processing window size, should be odd.
     
        public ForkBlur(int[] src, int start, int length, int[] dst) {
            mSource = src;
            mStart = start;
            mLength = length;
            mDestination = dst;
        }
     
        // Average pixels from source, write results into destination.
        protected void computeDirectly() {
            int sidePixels = (mBlurWidth - 1) / 2;
            for (int index = mStart; index < mStart + mLength; index++) {
                // Calculate average.
                float rt = 0, gt = 0, bt = 0;
                for (int mi = -sidePixels; mi <= sidePixels; mi++) {
                    int mindex = Math.min(Math.max(mi + index, 0), mSource.length - 1);
                    int pixel = mSource[mindex];
                    rt += (float) ((pixel & 0x00ff0000) >> 16) / mBlurWidth;
                    gt += (float) ((pixel & 0x0000ff00) >> 8) / mBlurWidth;
                    bt += (float) ((pixel & 0x000000ff) >> 0) / mBlurWidth;
                }
     
                // Re-assemble destination pixel.
                int dpixel = (0xff000000)
                        | (((int) rt) << 16)
                        | (((int) gt) << 8)
                        | (((int) bt) << 0);
                mDestination[index] = dpixel;
            }
        }
    ...

      现在,我们开始编写compute()的实现方法,该方法分成两部分:直接执行模糊操作和任务的划分;一个数组长度阈值sThreshold可以帮助我们决定任务是直接执行还是进行划分;

        @Override
        protected void compute() {
            if (mLength < sThreshold) {
                computeDirectly();
                return;
            }
     
            int split = mLength / 2;
     
            invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
                    new ForkBlur(mSource, mStart + split, mLength - split, 
                    mDestination));
        }

    接下来按如下步骤即可完成图像模糊任务啦:

    1、创建图像模糊任务

    ForkBlur fb = new ForkBlur(src, 0, src.length, dst);

    2、创建ForkJoinPool

    ForkJoinPool pool = new ForkJoinPool();

    3、执行图像模糊任务

    pool.invoke(fb);

    完整代码如下:

    /*
    * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
    *
    * Redistribution and use in source and binary forms, with or without
    * modification, are permitted provided that the following conditions
    * are met:
    *
    *   - Redistributions of source code must retain the above copyright
    *     notice, this list of conditions and the following disclaimer.
    *
    *   - Redistributions in binary form must reproduce the above copyright
    *     notice, this list of conditions and the following disclaimer in the
    *     documentation and/or other materials provided with the distribution.
    *
    *   - Neither the name of Oracle or the names of its
    *     contributors may be used to endorse or promote products derived
    *     from this software without specific prior written permission.
    *
    * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
    * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
    * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
    * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    */
     
    import java.awt.image.BufferedImage;
    import java.io.File;
    import java.util.concurrent.ForkJoinPool;
    import java.util.concurrent.RecursiveAction;
    import javax.imageio.ImageIO;
     
    /**
     * ForkBlur implements a simple horizontal image blur. It averages pixels in the
     * source array and writes them to a destination array. The sThreshold value
     * determines whether the blurring will be performed directly or split into two
     * tasks.
     *
     * This is not the recommended way to blur images; it is only intended to
     * illustrate the use of the Fork/Join framework.
     */
    public class ForkBlur extends RecursiveAction {
        private static final long serialVersionUID = -8032915917030559798L;
        private int[] mSource;
        private int mStart;
        private int mLength;
        private int[] mDestination;
        private int mBlurWidth = 15; // Processing window size, should be odd.
     
        public ForkBlur(int[] src, int start, int length, int[] dst) {
            mSource = src;
            mStart = start;
            mLength = length;
            mDestination = dst;
        }
     
        // Average pixels from source, write results into destination.
        protected void computeDirectly() {
            int sidePixels = (mBlurWidth - 1) / 2;
            for (int index = mStart; index < mStart + mLength; index++) {
                // Calculate average.
                float rt = 0, gt = 0, bt = 0;
                for (int mi = -sidePixels; mi <= sidePixels; mi++) {
                    int mindex = Math.min(Math.max(mi + index, 0), mSource.length - 1);
                    int pixel = mSource[mindex];
                    rt += (float) ((pixel & 0x00ff0000) >> 16) / mBlurWidth;
                    gt += (float) ((pixel & 0x0000ff00) >> 8) / mBlurWidth;
                    bt += (float) ((pixel & 0x000000ff) >> 0) / mBlurWidth;
                }
     
                // Re-assemble destination pixel.
                int dpixel = (0xff000000)
                        | (((int) rt) << 16)
                        | (((int) gt) << 8)
                        | (((int) bt) << 0);
                mDestination[index] = dpixel;
            }
        }
        protected static int sThreshold = 10000;
     
        @Override
        protected void compute() {
            if (mLength < sThreshold) {
                computeDirectly();
                return;
            }
     
            int split = mLength / 2;
     
            invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
                    new ForkBlur(mSource, mStart + split, mLength - split, 
                    mDestination));
        }
     
        // Plumbing follows.
        public static void main(String[] args) throws Exception {
            String srcName = "C:\test6.jpg";
            File srcFile = new File(srcName);
            BufferedImage image = ImageIO.read(srcFile);
             
            System.out.println("Source image: " + srcName);
             
            BufferedImage blurredImage = blur(image);
             
            String dstName = "C:\test6_out.jpg";
            File dstFile = new File(dstName);
            ImageIO.write(blurredImage, "jpg", dstFile);
             
            System.out.println("Output image: " + dstName);
             
        }
     
        public static BufferedImage blur(BufferedImage srcImage) {
            int w = srcImage.getWidth();
            int h = srcImage.getHeight();
     
            int[] src = srcImage.getRGB(0, 0, w, h, null, 0, w);
            int[] dst = new int[src.length];
     
            System.out.println("Array size is " + src.length);
            System.out.println("Threshold is " + sThreshold);
     
            int processors = Runtime.getRuntime().availableProcessors();
            System.out.println(Integer.toString(processors) + " processor"
                    + (processors != 1 ? "s are " : " is ")
                    + "available");
     
            ForkBlur fb = new ForkBlur(src, 0, src.length, dst);
     
            ForkJoinPool pool = new ForkJoinPool();
     
            long startTime = System.currentTimeMillis();
            pool.invoke(fb);
            long endTime = System.currentTimeMillis();
     
            System.out.println("Image blur took " + (endTime - startTime) + 
                    " milliseconds.");
     
            BufferedImage dstImage =
                    new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
            dstImage.setRGB(0, 0, w, h, dst, 0, w);
     
            return dstImage;
        }
    }
    View Code

    测试了一下,执行效果如下:

    Source image: C: est6.jpg
    Array size is 120000
    Threshold is 10000
    4 processors are available
    Image blur took 10 milliseconds.
    Output image: C: est6_out.jpg

     

     JDK中使用fork/join的例子

      除了我们上面提到的使用fork/join框架并行执行图像模糊任务之外,在JAVA SE中,也已经利用fork/join框架实现了一些非常有用的特性。其中一个实现是在JAVA SE8 中java.util.Arrays 类的parallelSort()方法。这些方法和sort()方法类似,但是可以通过fork/join框架并行执行。对于大数组排序,在多核处理器系统中,使用并行排序方法比顺序排序更加高效。当然,关于这些排序方法是如何利用fork/join框架不在本篇文章讨论范围,更多信息可以查看JAVA API文档。
      另一个fork/join框架的实现是在JAVA SE8中的java.util.streams包内,与Lambda表达式相关,更多信息,可以查看https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html链接。

    参考链接:https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

  • 相关阅读:
    只要你拥有爱心,你就会拥有快乐。
    解决升级 Office 2010 之后 Outlook 提示“无法打开 Microsoft Outlook”
    《老人与海》
    UML模型的组成
    2009年11月11日
    IBatis存取图片在Oracle Blob大字段中Asp.Net
    “北京今年入冬的第一场雪”,纪念博客园写日志一年了
    UML建模实践概述
    UML 类图
    UML 用例图
  • 原文地址:https://www.cnblogs.com/chenpi/p/5581198.html
Copyright © 2020-2023  润新知