• ConcurrentHashMap实现原理及源码分析


      ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对HashMap的实现原理还不甚了解,可参考我的另一篇文章HashMap实现原理及源码分析),ConcurrentHashMap在并发编程的场景中使用频率非常之高,本文就来分析下ConcurrentHashMap的实现原理,并对其实现原理进行分析(JDK1.7).

    ConcurrentHashMap实现原理

      众所周知,哈希表是中非常高效,复杂度为O(1)的数据结构,在Java开发中,我们最常见到最频繁使用的就是HashMap和HashTable,但是在线程竞争激烈的并发场景中使用都不够合理。

      HashMap :先说HashMap,HashMap是线程不安全的,在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的。

      HashTable : HashTable和HashMap的实现原理几乎一样,差别无非是1.HashTable不允许key和value为null;2.HashTable是线程安全的。但是HashTable线程安全的策略实现代价却太大了,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。

      HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。

      

    ConcurrentHashMap源码分析   

    ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。

     final Segment<K,V>[] segments;

      Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,有木有很酷)

      所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。

    Segment类似于HashMap,一个Segment维护着一个HashEntry数组

     transient volatile HashEntry<K,V>[] table;

    HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。

     static final class HashEntry<K,V> {
            final int hash;
            final K key;
            volatile V value;
            volatile HashEntry<K,V> next;
            //其他省略
    }    

    我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法

    Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
                this.loadFactor = lf;//负载因子
                this.threshold = threshold;//阈值
                this.table = tab;//主干数组即HashEntry数组
            }

    我们来看下ConcurrentHashMap的构造方法

     1  public ConcurrentHashMap(int initialCapacity,
     2                                float loadFactor, int concurrencyLevel) {
     3           if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
     4               throw new IllegalArgumentException();
     5           //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536
     6           if (concurrencyLevel > MAX_SEGMENTS)
     7               concurrencyLevel = MAX_SEGMENTS;
     8           //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
     9          int sshift = 0;
    10          //ssize 为segments数组长度,根据concurrentLevel计算得出
    11          int ssize = 1;
    12          while (ssize < concurrencyLevel) {
    13              ++sshift;
    14              ssize <<= 1;
    15          }
    16          //segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲
    17          this.segmentShift = 32 - sshift;
    18          this.segmentMask = ssize - 1;
    19          if (initialCapacity > MAXIMUM_CAPACITY)
    20              initialCapacity = MAXIMUM_CAPACITY;
    21          //计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.
    22          int c = initialCapacity / ssize;
    23          if (c * ssize < initialCapacity)
    24              ++c;
    25          int cap = MIN_SEGMENT_TABLE_CAPACITY;
    26          while (cap < c)
    27              cap <<= 1;
    28          //创建segments数组并初始化第一个Segment,其余的Segment延迟初始化
    29          Segment<K,V> s0 =
    30              new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
    31                               (HashEntry<K,V>[])new HashEntry[cap]);
    32          Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    33          UNSAFE.putOrderedObject(ss, SBASE, s0); 
    34          this.segments = ss;
    35      }

      初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。

      从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。至于更详细的原因,有兴趣的话可以参考我的另一篇文章HashMap实现原理及源码分析,其中对于数组长度为什么一定要是2的次幂有较为详细的分析。

      接下来,我们来看看put方法

     public V put(K key, V value) {
            Segment<K,V> s;
            //concurrentHashMap不允许key/value为空
            if (value == null)
                throw new NullPointerException();
            //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
            int hash = hash(key);
            //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                s = ensureSegment(j);
            return s.put(key, hash, value, false);
        }

     从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法

     关于segmentShift和segmentMask

      segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。

      segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性

      segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。

      get/put方法

      get方法

     public V get(Object key) {
            Segment<K,V> s; 
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    //先定位Segment,再定位HashEntry
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }

      get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。

      来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。

    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
                HashEntry<K,V> node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);//tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),若找不到,则创建HashEntry。tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。
                V oldValue;
                try {
                    HashEntry<K,V>[] tab = table;
                    int index = (tab.length - 1) & hash;//定位HashEntry,可以看到,这个hash值在定位Segment时和在Segment中定位HashEntry都会用到,只不过定位Segment时只用到高几位。
                    HashEntry<K,V> first = entryAt(tab, index);
                    for (HashEntry<K,V> e = first;;) {
                        if (e != null) {
                            K k;
                            if ((k = e.key) == key ||
                                (e.hash == hash && key.equals(k))) {
                                oldValue = e.value;
                                if (!onlyIfAbsent) {
                                    e.value = value;
                                    ++modCount;
                                }
                                break;
                            }
                            e = e.next;
                        }
                        else {
                            if (node != null)
                                node.setNext(first);
                            else
                                node = new HashEntry<K,V>(hash, key, value, first);
                            int c = count + 1;
                  //若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。这样可以最大程度避免之前散列好的entry重新散列,具体在另一篇文章中有详细分析,不赘述。扩容并rehash的这个过程是比较消耗资源的。
    if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }

     总结

      ConcurrentHashMap作为一种线程安全且高效的哈希表的解决方案,尤其其中的"分段锁"的方案,相比HashTable的全表锁在性能上的提升非常之大。本文对ConcurrentHashMap的实现原理进行了详细分析,并解读了部分源码,希望能帮助到有需要的童鞋。

  • 相关阅读:
    Bundle类
    AlertDialog
    认识Android
    TextView属性详解
    Android中设置文字大小的定义类型
    理解偏差
    python爬虫实验2
    python爬虫实验
    PHP sql注入漏洞修复(字符串型)
    java实现远程控制
  • 原文地址:https://www.cnblogs.com/chengxiao/p/6842045.html
Copyright © 2020-2023  润新知