Taiko taiko
Time Limit: 1000ms
Memory Limit: 65536KB
64-bit integer IO format: %lld Java class name: Main拆拆超级喜欢太鼓达人(赛后大家可自行百度规则),玩久了也对积分规则产生了兴趣,理论上连击数越多,分数增加的越快,而且还配合着击打准确度有相应的计算规则,拆拆觉得这些规则太复杂了,于是把规则自行简化了下:
对于一段击打序列,我们假设Y为打中,N为未打中 (没有良可之分了)
我们视连续的n次击中为n连击 相应的分数为 1+2+3+。。。+n
例如序列YNNYYYNYN的总分数为1+1+2+3+1=8
当然 击中是有概率的 我们假定概率始终为P(0<=P<=1)拆拆的击中概率很高的恩恩=w=
于是现在拆拆想知道对于长度为L的序列 击中概率为P时 获得积分的期望是多少
Input
一个整数T(表示T组数据)
接下来的T组数据
接下来T行 每行一个整数L 一个浮点数P
数据范围
1<=T<=1000
1<=L<=1000
0<=P<=1
Output
对于每组数据输出一行1个6位小数 即题目描述的期望
Sample Input
2 2 0.9 3 0.5
Sample Output
2.610000 2.125000
解题思路:应该是有证明和推导的,但是好多人都是找规律找出来的,规律就是:1*pn+2*pn-1+...n*p。至于为啥这样,数学渣也表示很无语。
#include<bits/stdc++.h> using namespace std; int main(){ int t; scanf("%d",&t); while(t--){ int n; double p,ans=0,tmp; scanf("%d%lf",&n,&p); tmp=p; for(int i=n;i>0;i--){ ans+=i*tmp; tmp*=p; } printf("%.6lf ",ans); } return 0; }