CBAM
2018-ECCV-CBAM: Convolutional block attention module
来源: ChenBong 博客园
- Institute:KAIST,Lunit,Adobe
- Author:Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon
- GitHub:
- Citation: 1600+
Introduction
提出了一种在 channel-wise 和 spatial-wise 的注意力模块,可以嵌入任何CNN,在增加微小的计算开销的情况下,显著提高模型性能。
Motivation
- 人类视觉会关注到重要的部分,而不是图片的每个像素
Contribution
- 简单高效的 attention 模块(CBMA),可以用来嵌入任何CNN结构
Method
Feature MAP: (mathbf{F} in mathbb{R}^{C imes H imes W})
1D Channel attention Map: (mathbf{M}_{mathbf{c}} in mathbb{R}^{C imes 1 imes 1})
2D Spatial attention Map: (mathbf{M}_{mathbf{s}} in mathbb{R}^{1 imes H imes W})
Feature MAP 先乘 1D 的 Channel attention Map,再乘 2D 的 Spatial attention Map:
(mathbf{F}^{prime}=mathbf{M}_{mathbf{c}}(mathbf{F}) otimes mathbf{F})
(mathbf{F}^{prime prime}=mathbf{M}_{mathbf{s}}left(mathbf{F}^{prime}
ight) otimes mathbf{F}^{prime})
Channel attention module
(egin{aligned} mathbf{M}_{mathbf{c}}(mathbf{F}) &=sigma(operatorname{MLP}(operatorname{AvgPool}(mathbf{F}))+M L P(operatorname{MaxPool}(mathbf{F}))) \ &=sigmaleft(mathbf{W}_{mathbf{1}}left(mathbf{W}_{mathbf{0}}left(mathbf{F}_{mathbf{a v g}}^{mathbf{c}} ight) ight)+mathbf{W}_{mathbf{1}}left(mathbf{W}_{mathbf{0}}left(mathbf{F}_{max }^{mathbf{c}} ight) ight) ight) end{aligned})
其中 (mathbf{W_0}) 和 (mathbf{W_1}) 是2层的Share MLP的参数
Spatial attention module
(egin{aligned} mathbf{M}_{mathbf{s}}(mathbf{F}) &=sigmaleft(f^{7 imes 7}([operatorname{AvgPool}(mathbf{F}) ; operatorname{MaxPool}(mathbf{F})]) ight) \ &=sigmaleft(f^{7 imes 7}left(left[mathbf{F}_{mathbf{a v g}}^{mathbf{s}} ; mathbf{F}_{mathbf{m a x}}^{mathbf{s}} ight] ight) ight) end{aligned})
Arrangement of attention modules
3种组合方式:并行,Channel first,Spatial first
其中 Channel first 更好
Experiments
Ablation studies
Channel attention
Spatial attention
Arrangement
main result
Image Classification on ImageNet
Object detection on COCO and VOC
Attention Visualization (Grad-CAM)
Conclusion
Summary
pros:
- 方法简单统一(AvgPool+MaxPool)+MLP/Conv
- 效果好(Res50上提将近2个点),架构无关,任务无关,通用的模块
- attention可视化的图画的很好,softmax score 提升明显
To Read
Reference
万字长文:特征可视化技术(CAM) https://zhuanlan.zhihu.com/p/269702192
CAM和Grad-CAM https://bindog.github.io/blog/2018/02/10/model-explanation/