Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Yuta has n 01 strings si, and he wants to know the number of 01 antisymmetric strings of length 2L which contain all given strings si as continuous substrings.
A 01 string s is antisymmetric if and only if s[i]≠s[|s|−i+1] for all i∈[1,|s|].
It is too difficult for Rikka. Can you help her?
In the second sample, the strings which satisfy all the restrictions are 000111,001011,011001,100110.
Yuta has n 01 strings si, and he wants to know the number of 01 antisymmetric strings of length 2L which contain all given strings si as continuous substrings.
A 01 string s is antisymmetric if and only if s[i]≠s[|s|−i+1] for all i∈[1,|s|].
It is too difficult for Rikka. Can you help her?
In the second sample, the strings which satisfy all the restrictions are 000111,001011,011001,100110.
Input
The first line contains a number t(1≤t≤5), the number of the testcases.
For each testcase, the first line contains two numbers n,L(1≤n≤6,1≤L≤100).
Then n lines follow, each line contains a 01 string si(1≤|si|≤20).
For each testcase, the first line contains two numbers n,L(1≤n≤6,1≤L≤100).
Then n lines follow, each line contains a 01 string si(1≤|si|≤20).
Output
For each testcase, print a single line with a single number -- the answer modulo 998244353.
Sample Input
2
2 2
011
001
2 3
011
001
Sample Output
1
4
题意:反对称:对于一个长为2*N的串s[0~2*N-1],s[i]^s[2*N-1-i]=1 。现在有n个01串,求有多少个长为2*L的并且包含这n个串的 反对称01串?
思路:对于一个串包含在2*L的01串中,那么这个串要么在2*L的前半部分,要么后半部分,或者跨越中间,如果在后半部分,则需要找到其在前半部分的反对称01串,对于跨越中间的01串,则需要找到其在前面部分的串,例如:0 | 11,以竖线作为串中间,那么如果前面部分如果以00结束,那么一定含有 011这个串。把每个串的所有形式放入AC自动机对应的tire树中,然后状压递推。
代码如下:
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <queue> #include <string> using namespace std; const int mod=998244353; const int N=2005; struct Node{ int id; Node *fail; Node *son[2]; int tag1,tag2; }node[N]; queue<Node *>q; int tot; int dp[2][2005][64]; void insert1(string s,int id) { int len=s.length(); Node *now=&node[0]; for(int i=0;i<len;i++) { int x=s[i]-'0'; if(now->son[x]==NULL) now->son[x]=&node[tot++]; now=now->son[x]; } now->tag1|=(1<<id); } void insert2(string s,int id) { int len=s.length(); Node *now=&node[0]; for(int i=0;i<len;i++) { int x=s[i]-'0'; if(now->son[x]==NULL) now->son[x]=&node[tot++]; now=now->son[x]; } now->tag2|=(1<<id); } void init() { for(int i=0;i<N;i++) { node[i].id=i; node[i].fail=NULL; node[i].son[0]=node[i].son[1]=NULL; node[i].tag1=node[i].tag2=0; } } void setFail() { Node* root=&node[0]; q.push(root); while(!q.empty()) { Node* now=q.front(); q.pop(); for(int i=0;i<2;i++) { if(now->son[i]) { Node* p=now->fail; while(p && (!(p->son[i]))) p=p->fail; now->son[i]->fail=(p)?(p->son[i]):(root); now->son[i]->tag1|=now->son[i]->fail->tag1; now->son[i]->tag2|=now->son[i]->fail->tag2; q.push(now->son[i]); } else now->son[i]=(now!=root)?now->fail->son[i]:(root); } } } void print() { Node* now=&node[0]; queue<Node*>qq; qq.push(now); while(!qq.empty()) { now=qq.front(); qq.pop(); cout<<"Y:"<<now->id<<" "; for(int i=0;i<2;i++) { if(now->son[i]) qq.push(now->son[i]),cout<<now->son[i]->id<<" "; else cout<<"NULL"<<" "; } cout<<endl; } } int main() { ///cout << "Hello world!" << endl; int t; cin>>t; while(t--) { init(); tot=1; int n,L; scanf("%d%d",&n,&L); for(int i=0;i<n;i++) { string s; cin>>s; insert1(s,i); string t=s; reverse(t.begin(),t.end()); int len=s.length(); for(int j=0;j<len;j++) t[j]=(char)((t[j]-'0')^1+'0'); insert1(t,i); int mnLen=min(len,L); for(int j=0;j<mnLen;j++) { int f=1; for(int l=j,r=j+1; l>=0&&r<len; l--,r++) { if((s[l]^s[r])==0) { f=0; break; } } if(!f) continue; t=s.substr(0,j+1); for(int k=2*j+2;k<len;k++) { t=(char)((s[k]-'0')^1+'0')+t; } insert2(t,i); } } ///print(); setFail(); memset(dp,0,sizeof(dp)); dp[0][0][0]=1; int cn=0,stu=(1<<n); for(int i=0;i<L;i++) { int c=cn^1; memset(dp[c],0,sizeof(dp[c])); for(int j=0;j<tot;j++) { for(int s=0;s<stu;s++) { if(!dp[cn][j][s]) continue; if(i<L-1) for(int k=0;k<2;k++) { int x=node[j].son[k]->id; int tag=node[x].tag1; dp[c][x][s|tag]=(dp[c][x][s|tag]+dp[cn][j][s])%mod; } else for(int k=0;k<2;k++) { int x=node[j].son[k]->id; int tag=node[x].tag1|node[x].tag2; dp[c][x][s|tag]=(dp[c][x][s|tag]+dp[cn][j][s])%mod; } } } cn=c; } int ans=0; for(int i=0;i<tot;i++) { ans=(ans+dp[cn][i][stu-1])%mod; } printf("%d ",ans); } return 0; }