• HDU 5113--Black And White(搜索+剪枝)


    题目链接

    Problem Description
    In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
    — Wikipedia, the free encyclopedia

    In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

    You are asked to solve a similar problem:

    Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.

    Matt hopes you can tell him a possible coloring.
     
    Input
    The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

    For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

    The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.

    It’s guaranteed that c1 + c2 + · · · + cK = N × M .
     
    Output
    For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1). 

    In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

    If there are multiple solutions, output any of them.
     
    Sample Input
    4
    1 5 2
    4 1
    3 3 4
    1 2 2 4
    2 3 3
    2 2 2
    3 2 3
    2 2 2
     
    Sample Output
    Case #1: NO
    Case #2: YES
    4 3 4
    2 1 2
    4 3 4
    Case #3:
    YES
    1 2 3
    2 3 1
    Case #4:
    YES
    1 2
    2 3
    3 1

    题意:有一个N*M的方格板,现在要在上面的每个方格上涂颜色,有K种颜色,每种颜色分别涂c[1]次、c[2]次……c[K]次,c[1]+c[2]+……+c[K]=N*M

              要求每个方格的颜色与其上下左右均不同,如果可以输出YES,并且输出其中的一种涂法,如果不行,输出NO;

    思路:暴力搜索,但是这样会超时,可以在搜索中加入剪枝:对于剩余的方格数res,以及当前剩余的颜色可涂数必须满足(res+1)/2>=c[i]  

              否则在当前情况下继续向下搜得不到正确涂法;

    代码如下:

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    int N,K,M;
    int c[30];
    int mp[10][10];
    
    int check(int x,int y,int k)
    {
        int f=1;
        if(mp[x-1][y]==k) f=0;
        if(mp[x][y-1]==k) f=0;
        return f;
    }
    
    int cal(int x,int y)
    {
        if(x>N) return 1;
        int res=(N-x)*M+M-y+2; ///剩余方格数+1 ;
        for(int i=1;i<=K;i++) if(res/2<c[i]) return 0; ///剪枝,某种颜色剩余方格数>(剩余方格数+1)/2 肯定不对;
        for(int i=1;i<=K;i++)
        {
            int f=0;
            if(c[i]&&check(x,y,i)){
                mp[x][y]=i; c[i]--;
                if(y==M)  f=cal(x+1,1);
                else      f=cal(x,y+1);
                c[i]++;
            }
            if(f) return 1;
        }
        return 0;
    }
    
    int main()
    {
        int T,Case=1;
        cin>>T;
        while(T--)
        {
           scanf("%d%d%d",&N,&M,&K);
           for(int i=1;i<=K;i++) scanf("%d",&c[i]);
           printf("Case #%d:
    ",Case++);
    
           if(!cal(1,1)) { puts("NO"); continue; }
           puts("YES");
           for(int i=1;i<=N;i++)
           for(int j=1;j<=M;j++)
             printf("%d%c",mp[i][j],(j==M)?'
    ':' ');
        }
        return 0;
    }
  • 相关阅读:
    python35 1.守护进程 2.互斥锁3.IPC 4.生产者和消费者模型
    python34 多进程: 1.进程与程序的区别 2.阻塞 非阻塞 并行 并发(重点) 3.进程三种方式的切换 4.程序员永恒的话题 5.进程的创建以及销毁 6.进程的两种使用方式(重点) 7.join函数(重点) 8.process常用属性 9僵尸与孤儿进程(了解)
    Python33 1.UDP协议 2.与TCP区别 3.DNS服务器 4.进程----进入并发编程的学习 5.操作系统 6.多道技术
    Mybatis 属性配置
    SqlSessionFactoryBuilder、SqlSessionFactory、SqlSession
    MyBatis 简单入门
    spring mvc 异步 DeferredResult
    Spring MVC 异步请求 Callable
    Servlet 异步处理
    @EnableWebMvc
  • 原文地址:https://www.cnblogs.com/chen9510/p/7077871.html
Copyright © 2020-2023  润新知