「ROI 2018 Day 2」无进位加法
题目大意:
给出二进制数(a_1,ldots a_n),对于(b_1ldots b_n)
满足(a_ileq b_i),(igoplus b_i=sum b_i),其中$igoplus $为异或和
求(sum b_i)最小值
设长度量级为(N=sum len(a_i))
(O(N^2-N^3)) , 从高到低确定答案的每一个位
枚举当前位为0,下面的位为1,贪心确定是否存在方案
检查一个答案是否合法:
动态维护一个倒序的(a_i)集合,从高到低考虑每一个位置
1.如果当前位为0:
如果(a_i)中存在大于等于这一位的数,非法
2.如果当前位为1:
2-1.如果(a_i)中存在2个当前位为1的数,非法
2-2.如果(a_i)中存在恰好一个,则将这个1用于这个(a_i),并将(a_i)去掉最高位后放回集合
2-3.不存在,用这个(1)删除最大的一个(a_i)
实际看来,这个贪心本身效率并不高
优化1:快速确定答案最高位的可能范围
令(B=max{ len(a_i)+i-1})
则(len(Ans)in[B,B+1])
上下界均可以由上面的贪心模拟得到
优化2:快速维护(a_i)倒序
显然在不断更改的过程中,当前的(a_i)一定是原先的某一个(a_i)的一段后缀
考虑将所有这样的后缀排序,为了方便,用每一个最高的1来表示一个合法的后缀
显然可以先按照后缀长度分类,同长度的后缀,按照后缀中下一个1出现的位置排序
也就是一个类似基数排序个过程,额外维护每一个后缀中下一个出现的(1)所对应的后缀即可
预处理复杂度为(O(Nlog N))
同时,也可以用线段树快速维护插入/删除的排名,得到(B)的值,单次操作复杂度(O(log N))
优化3
称满足(len(a_i)+i-1=B)的(i)为( ext{critical number})
令(p)为最小的( ext{critical number}),也就是在贪心过程中第一个出现情况2-1./2-2.的位置
决策答案为(B)还是为(B+1),也就是决策
是用(len(a_p))这个位置删除(a_p)的最高位,还是用(len(a_p)+1)的位置删除(a_p)
(([1,p-1])的部分一定会被删掉)
( ext{intended solution})采用暴力递归来完成确定每一位的这个操作
Function Solve(Limit) Limit为当前可以使用的最高位的1
求得 B,p
删除 a[1,p-1]
删除 a[p]最高位
if B<=Limit and Solve(p-1) then
ans[len(a[p]),B]=1
return True
删除a[p]
if B+1<=Limit and Solve(p) then
ans[len(a[p])+1,B+1]=1
return True
else return False
end
至于复杂度,官方题解给出为(O(N))次递归和删除/加入操作,最终复杂度为(O(Nlog N))
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define rep(i,a,b) for(int i=a,i##end=b;i<=i##end;++i)
#define drep(i,a,b) for(int i=a,i##end=b;i>=i##end;--i)
template <class T> inline void cmin(T &a,const T &b){ ((a>b)&&(a=b)); }
template <class T> inline void cmax(T &a,const T &b){ ((a<b)&&(a=b)); }
char IO;
int rd(){
int s=0;
while(!isdigit(IO=getchar()));
do s=(s<<1)+(s<<3)+(IO^'0');
while(isdigit(IO=getchar()));
return s;
}
typedef vector <int> V;
const int N=3e5+10,INF=1e9+10;
int n,m,I[N],L;
char s[N];
int fir[N],nxt[N],rk[N],len[N],id[N];
V A[N];
struct Affirmation_Of_My_Existence{
int s[N<<2],t[N<<2];
void Down(int p){
rep(v,p<<1,p<<1|1) t[v]+=t[p],s[v]+=t[p];
t[p]=0;
}
void Upd(int p,int l,int r,int ql,int qr,int x) {
if(ql>qr) return;
if(ql<=l && r<=qr) {
s[p]+=x,t[p]+=x;
return;
}
Down(p);
int mid=(l+r)>>1;
if(ql<=mid) Upd(p<<1,l,mid,ql,qr,x);
if(qr>mid) Upd(p<<1|1,mid+1,r,ql,qr,x);
s[p]=max(s[p<<1],s[p<<1|1]);
}
void Build(int p,int l,int r){
s[p]=len[id[l]]-INF;
if(l==r) return;
int mid=(l+r)>>1;
Build(p<<1,l,mid),Build(p<<1|1,mid+1,r);
}
void Add(int x,int k){
x=rk[x];
Upd(1,1,m,x,x,INF*k),Upd(1,1,m,x+1,m,k);
}
// Find the first critical position "p", and return all the bits in [1,p]
void Get(int p,int l,int r,int x,V &R){
if(s[p]<0) return;
if(l==r) return R.pb(id[l]);
Down(p);
int mid=(l+r)>>1;
Get(p<<1,l,mid,x,R);
if(s[p<<1]!=x) Get(p<<1|1,mid+1,r,x,R);
}
} T;
int Solve(int L){
// L denotes the maxmium bit we can use
int B=T.s[1];
if(B<0) return 1;
if(B>L) return 0;
V R; T.Get(1,1,m,B,R);
int p=*R.rbegin(),l=len[p];
for(int i:R) T.Add(i,-1);
// Try ans B , so we use bit [nxt,B] to delete the number [1,p-1]
// and the number a[p] will be set to a[p]-2^l
if(nxt[p]) T.Add(nxt[p],1);
if(Solve(l-1)) {
rep(i,l,B) s[i]=1;
return B+1;
}
// Try ans B+1 , so we use bit [nxt+1,B+1] to delete the [1,p]
if(nxt[p]) T.Add(nxt[p],-1);
if(B<L && Solve(l)) {
rep(i,l+1,B+1) s[i]=1;
return B+2;
}
for(int i:R) T.Add(i,1);
return 0;
}
int main(){
rep(i,1,n=rd()) {
scanf("%s",s); int l=strlen(s);
cmax(L,l);
drep(j,l-1,0) if(s[j]=='1') {
nxt[++m]=fir[i];
A[len[m]=l-j-1].pb(m);
fir[i]=m;
}
}
rk[0]=1e9;
int k=m;
rep(i,0,L-1) {
k-=A[i].size();
sort(A[i].begin(),A[i].end(),[&](int x,int y){ return rk[nxt[x]]<rk[nxt[y]]; });
for(int j:A[i]) id[rk[j]=++k]=j;
k-=A[i].size();
}
T.Build(1,1,m);
rep(i,1,n) T.Add(fir[i],1);
memset(s,0,sizeof s);
drep(i,Solve(INF)-1,0) putchar(s[i]^48);
}