数学上最漂亮的办法是最大熵(maximum entropy)模型,它相当于行星运动的椭圆模型。
"最大熵"这个名词听起来很深奥,但是它的原理很简单,我们每天都在用。说白了,就是要保留全部的不确定性,将风险降到最小。让我们来看一个实际例子。
有 一次,我去 AT&T 实验室作关于最大熵模型的报告,我带去了一个色子。我问听众"每个面朝上的概率分别是多少",所有人都说是等概率,即各点的概率均为1/6。这种猜测当然 是对的。我问听众们为什么,得到的回答是一致的:对这个"一无所知"的色子,假定它每一个朝上概率均等是最安全的做法。(你不应该主观假设它象韦小宝的色 子一样灌了铅。)从投资的角度看,就是风险最小的做法。从信息论的角度讲,就是保留了最大的不确定性,也就是说让熵达到最大。接着,我又告诉听众,我的这 个色子被我特殊处理过,已知四点朝上的概率是三分之一,在这种情况下,每个面朝上的概率是多少?这次,大部分人认为除去四点的概率是 1/3,其余的均是 2/15,也就是说已知的条件(四点概率为 1/3)必须满足,而对其余各点的概率因为仍然无从知道,因此只好认为它们均等。注意,在猜测这两种不同情况下的概率分布时,大家都没有添加任何主观的假 设,诸如四点的反面一定是三点等等。(事实上,有的色子四点反面不是三点而是一点。)这种基于直觉的猜测之所以准确,是因为它恰好符合了最大熵原理。
最 大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。(不做主观假设这 点很重要。)在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫"最大熵模型"。我们常说,不要把所有 的鸡蛋放在一个篮子里,其实就是最大熵原理的一个朴素的说法,因为当我们遇到不确定性时,就要保留各种可能性。
http://www.cnblogs.com/ooon/p/5677098.html
信息熵
在物理界中熵是描述事物无序性的参数,熵越大则越混乱。
MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最好的模型;若概率模型需要满足一些约束,则最大熵原理就是在满足已知约束的条件集合中选择熵最大模型。