• Convolutional neural network (CNN)


    import torch
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    
    # 配置GPU或CPU设置
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    # 超参数设置
    num_epochs = 5
    num_classes = 10
    batch_size = 100
    learning_rate = 0.001
    
    # 下载 MNIST dataset
    train_dataset = torchvision.datasets.MNIST(root='./data/',
                                               train=True,
                                               transform=transforms.ToTensor(),# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
                                               download=True)
    
    test_dataset = torchvision.datasets.MNIST(root='./data/',
                                              train=False,
                                              transform=transforms.ToTensor())# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
    
    # 训练数据加载,按照batch_size大小加载,并随机打乱
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True)
    # 测试数据加载,按照batch_size大小加载
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    
    # Convolutional neural network (two convolutional layers) 2层卷积
    class ConvNet(nn.Module):
        def __init__(self, num_classes=10):
            super(ConvNet, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(16),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2))
            self.layer2 = nn.Sequential(
                nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2))
            self.fc = nn.Linear(7 * 7 * 32, num_classes)
    
        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = out.reshape(out.size(0), -1)
            out = self.fc(out)
            return out
    
    
    model = ConvNet(num_classes).to(device)
    print(model)
    
    # ConvNet(
    #   (layer1): Sequential(
    #     (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    #     (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #     (2): ReLU()
    #     (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
    #   (layer2): Sequential(
    #     (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    #     (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #     (2): ReLU()
    #     (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
    #   (fc): Linear(in_features=1568, out_features=10, bias=True))
    
    # 损失函数与优化器设置
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化器设置 ,并传入CNN模型参数和相应的学习率
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # 训练CNN模型
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.to(device)
            labels = labels.to(device)
    
            # 前向传播
            outputs = model(images)
            # 计算损失 loss
            loss = criterion(outputs, labels)
    
            # 反向传播与优化
            # 清空上一步的残余更新参数值
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 将参数更新值施加到RNN model的parameters上
            optimizer.step()
            # 每迭代一定步骤,打印结果值
            if (i + 1) % 100 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                       .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
    
    # 测试模型
    # model.train model.eval  在测试模型时在前面使用:model.eval() ; 在训练模型时会在前面加上:model.train()
    # 让model变成测试模式,是针对model 在训练时和评价时不同的 Batch Normalization  和  Dropout 方法模式
    # eval()时,让model变成测试模式, pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,
    # 不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
    model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
    
    # 保存已经训练好的模型
    # Save the model checkpoint
    torch.save(model.state_dict(), 'model.ckpt')
    

      

  • 相关阅读:
    python float保留两位小数
    linux使用ftp服务
    selenium是如何启动浏览器的
    小白学PYTHON时最容易犯的6个错误,看看你遇到过几个
    为什么你需要测试某个字段为空的场景
    为什么要做接口测试
    从爱奇艺招聘信息看当前测试开发的技能要求
    测试同学难道要写一辈子的hello world?
    收藏清单: python测试框架最全资源汇总
    如何写出测不出bug的测试用例
  • 原文地址:https://www.cnblogs.com/jeshy/p/11438484.html
Copyright © 2020-2023  润新知