• logging模块 旗舰版


    函数式简单配置

    import logging  
    logging.debug('debug message')  
    logging.info('info message')  
    logging.warning('warning message')  
    logging.error('error message')  
    logging.critical('critical message') 
    

    默认情况下Python的logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级CRITICAL > ERROR > WARNING > INFO > DEBUG),默认的日志格式为日志级别:Logger名称:用户输出消息。

    **灵活配置日志级别,日志格式,输出位置:

    import logging  
    logging.basicConfig(level=logging.DEBUG,  
                        format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',  
                        datefmt='%a, %d %b %Y %H:%M:%S',  
                        filename='/tmp/test.log',  
                        filemode='w')  
      
    logging.debug('debug message')  
    logging.info('info message')  
    logging.warning('warning message')  
    logging.error('error message')  
    logging.critical('critical message')
    
    logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:
    
    filename:用指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中。
    filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
    format:指定handler使用的日志显示格式。
    datefmt:指定日期时间格式。
    level:设置rootlogger(后边会讲解具体概念)的日志级别
    stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件(f=open(‘test.log’,’w’)),默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
    
    format参数中可能用到的格式化串:
    %(name)s Logger的名字
    %(levelno)s 数字形式的日志级别
    %(levelname)s 文本形式的日志级别
    %(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
    %(filename)s 调用日志输出函数的模块的文件名
    %(module)s 调用日志输出函数的模块名
    %(funcName)s 调用日志输出函数的函数名
    %(lineno)d 调用日志输出函数的语句所在的代码行
    %(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
    %(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
    %(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
    %(thread)d 线程ID。可能没有
    %(threadName)s 线程名。可能没有
    %(process)d 进程ID。可能没有
    %(message)s用户输出的消息
    

    参数详解

    logger对象配置

    import logging
    
    logger = logging.getLogger()
    # 创建一个handler,用于写入日志文件
    fh = logging.FileHandler('test.log',encoding='utf-8') # 再创建一个handler,用于输出到控制台 ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    fh.setLevel(logging.DEBUG)fh.setFormatter(formatter) ch.setFormatter(formatter) 
    logger.addHandler(fh) #logger对象可以添加多个fh和ch对象 logger.addHandler(ch) logger.debug('logger debug message') logger.info('logger info message') logger.warning('logger warning message') logger.error('logger error message') logger.critical('logger critical message')
    

    logging库提供了多个组件:Logger、Handler、Filter、Formatter。Logger对象提供应用程序可直接使用的接口,Handler发送日志到适当的目的地,Filter提供了过滤日志信息的方法,Formatter指定日志显示格式。另外,可以通过:logger.setLevel(logging.Debug)设置级别,当然,也可以通过

    fh.setLevel(logging.Debug)单对文件流设置某个级别。

    logger的配置文件

    有的同学习惯通过logger的对象配置去完成日志的功能,没问题,但是上面这种方式需要创建各种对象,比如logger对象,fileHandler对象,ScreamHandler对象等等,比较麻烦,那么下面给你提供一种字典的方式,创建logger配置文件,这种才是工作中经常使用的实现日志功能的方法,真正的做到 ----- 拿来即用(简单改改)。

    """
    logging配置
    """
    
    import os
    import logging.config
    
    # 定义三种日志输出格式 开始
    
    standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' 
                      '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
    
    simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
    
    id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
    
    # 定义日志输出格式 结束
    
    logfile_dir = os.path.dirname(os.path.abspath(__file__))  # log文件的目录
    
    logfile_name = 'all2.log'  # log文件名
    
    # 如果不存在定义的日志目录就创建一个
    if not os.path.isdir(logfile_dir):
        os.mkdir(logfile_dir)
    
    # log文件的全路径
    logfile_path = os.path.join(logfile_dir, logfile_name)
    
    # log配置字典
    LOGGING_DIC = {
        'version': 1,
        'disable_existing_loggers': False,
        'formatters': {
            'standard': {
                'format': standard_format
            },
            'simple': {
                'format': simple_format
            },
        },
        'filters': {},
        'handlers': {
            #打印到终端的日志
            'console': {
                'level': 'DEBUG',
                'class': 'logging.StreamHandler',  # 打印到屏幕
                'formatter': 'simple'
            },
            #打印到文件的日志,收集info及以上的日志
            'default': {
                'level': 'DEBUG',
                'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
                'formatter': 'standard',
                'filename': logfile_path,  # 日志文件
                'maxBytes': 1024*1024*5,  # 日志大小 5M
                'backupCount': 5,
                'encoding': 'utf-8',  # 日志文件的编码,再也不用担心中文log乱码了
            },
        },
        'loggers': {
            #logging.getLogger(__name__)拿到的logger配置
            '': {
                'handlers': ['default', 'console'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
                'level': 'DEBUG',
                'propagate': True,  # 向上(更高level的logger)传递
            },
        },
    }
    
    
    def load_my_logging_cfg():
        logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
        logger = logging.getLogger(__name__)  # 生成一个log实例
        logger.info('It works!')  # 记录该文件的运行状态
    
    if __name__ == '__main__':
        load_my_logging_cfg()
    

    logger配置文件

    注意注意注意:
    
    
    #1、有了上述方式我们的好处是:所有与logging模块有关的配置都写到字典中就可以了,更加清晰,方便管理
    
    
    #2、我们需要解决的问题是:
        1、从字典加载配置:logging.config.dictConfig(settings.LOGGING_DIC)
    
        2、拿到logger对象来产生日志
        logger对象都是配置到字典的loggers 键对应的子字典中的
        按照我们对logging模块的理解,要想获取某个东西都是通过名字,也就是key来获取的
        于是我们要获取不同的logger对象就是
        logger=logging.getLogger('loggers子字典的key名')
    
        
        但问题是:如果我们想要不同logger名的logger对象都共用一段配置,那么肯定不能在loggers子字典中定义n个key   
     'loggers': {    
            'l1': {
                'handlers': ['default', 'console'],  #
                'level': 'DEBUG',
                'propagate': True,  # 向上(更高level的logger)传递
            },
            'l2: {
                'handlers': ['default', 'console' ], 
                'level': 'DEBUG',
                'propagate': False,  # 向上(更高level的logger)传递
            },
            'l3': {
                'handlers': ['default', 'console'],  #
                'level': 'DEBUG',
                'propagate': True,  # 向上(更高level的logger)传递
            },
    
    }
    
        
    #我们的解决方式是,定义一个空的key
        'loggers': {
            '': {
                'handlers': ['default', 'console'], 
                'level': 'DEBUG',
                'propagate': True, 
            },
    
    }
    
    这样我们再取logger对象时
    logging.getLogger(__name__),不同的文件__name__不同,这保证了打印日志时标识信息不同,但是拿着该名字去loggers里找key名时却发现找不到,于是默认使用key=''的配置
    
  • 相关阅读:
    畅销书排行榜
    阿里云大数据产品体系
    天然气收费管理系统的研究与实现随笔
    Web端实现RTC视频特效的解决方案
    从0搭建在线聊天室,只需4步!
    技术干货 | JavaScript 之事件循环(Event Loop)
    C++20 四大特性之一:Module 特性详解
    Android Flutter 多实例实践
    网易云信线上万人连麦技术大揭秘
    Python + Pytest 自动化框架的用例依赖实操
  • 原文地址:https://www.cnblogs.com/changxin7/p/11291090.html
Copyright © 2020-2023  润新知