• C++核心编程


    C++核心编程

    本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓。

    1 内存分区模型

    C++程序在执行时,将内存大方向划分为4个区域

    • 代码区:存放函数体的二进制代码,由操作系统进行管理的
    • 全局区:存放全局变量和静态变量以及常量
    • 栈区:由编译器自动分配释放, 存放函数的参数值,局部变量等
    • 堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收

    内存四区意义:

    不同区域存放的数据,赋予不同的生命周期, 给我们更大的灵活编程

    1.1 程序运行前

    ​ 在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域

    代码区:

    ​ 存放 CPU 执行的机器指令

    ​ 代码区是共享的,共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可

    ​ 代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令

    全局区:

    ​ 全局变量和静态变量存放在此.

    ​ 全局区还包含了常量区, 字符串常量和其他常量也存放在此.

    该区域的数据在程序结束后由操作系统释放.

    示例:

    //全局变量
    int g_a = 10;
    int g_b = 10;
    
    //全局常量
    const int c_g_a = 10;
    const int c_g_b = 10;
    
    int main() {
    
    	//局部变量
    	int a = 10;
    	int b = 10;
    
    	//打印地址
    	cout << "局部变量a地址为: " << (int)&a << endl;
    	cout << "局部变量b地址为: " << (int)&b << endl;
    
    	cout << "全局变量g_a地址为: " <<  (int)&g_a << endl;
    	cout << "全局变量g_b地址为: " <<  (int)&g_b << endl;
    
    	//静态变量
    	static int s_a = 10;
    	static int s_b = 10;
    
    	cout << "静态变量s_a地址为: " << (int)&s_a << endl;
    	cout << "静态变量s_b地址为: " << (int)&s_b << endl;
    
    	cout << "字符串常量地址为: " << (int)&"hello world" << endl;
    	cout << "字符串常量地址为: " << (int)&"hello world1" << endl;
    
    	cout << "全局常量c_g_a地址为: " << (int)&c_g_a << endl;
    	cout << "全局常量c_g_b地址为: " << (int)&c_g_b << endl;
    
    	const int c_l_a = 10;
    	const int c_l_b = 10;
    	cout << "局部常量c_l_a地址为: " << (int)&c_l_a << endl;
    	cout << "局部常量c_l_b地址为: " << (int)&c_l_b << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    打印结果:

    1545017602518

    总结:

    • C++中在程序运行前分为全局区和代码区
    • 代码区特点是共享和只读
    • 全局区中存放全局变量、静态变量、常量
    • 常量区中存放 const修饰的全局常量 和 字符串常量

    1.2 程序运行后

    栈区:

    ​ 由编译器自动分配释放, 存放函数的参数值,局部变量等

    ​ 注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放

    示例:

    int * func()
    {
    	int a = 10;
    	return &a;
    }
    
    int main() {
    
    	int *p = func();
    
    	cout << *p << endl;
    	cout << *p << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    堆区:

    ​ 由程序员分配释放,若程序员不释放,程序结束时由操作系统回收

    ​ 在C++中主要利用new在堆区开辟内存

    示例:

    int* func()
    {
    	int* a = new int(10);
    	return a;
    }
    
    int main() {
    
    	int *p = func();
    
    	cout << *p << endl;
    	cout << *p << endl;
        
    	system("pause");
    
    	return 0;
    }
    

    总结:

    堆区数据由程序员管理开辟和释放

    堆区数据利用new关键字进行开辟内存

    1.3 new操作符

    ​ C++中利用new操作符在堆区开辟数据

    ​ 堆区开辟的数据,由程序员手动开辟,手动释放,释放利用操作符 delete

    ​ 语法: new 数据类型

    ​ 利用new创建的数据,会返回该数据对应的类型的指针

    示例1: 基本语法

    int* func()
    {
    	int* a = new int(10);
    	return a;
    }
    
    int main() {
    
    	int *p = func();
    
    	cout << *p << endl;
    	cout << *p << endl;
    
    	//利用delete释放堆区数据
    	delete p;
    
    	//cout << *p << endl; //报错,释放的空间不可访问
    
    	system("pause");
    
    	return 0;
    }
    

    示例2:开辟数组

    //堆区开辟数组
    int main() {
    
    	int* arr = new int[10];
    
    	for (int i = 0; i < 10; i++)
    	{
    		arr[i] = i + 100;
    	}
    
    	for (int i = 0; i < 10; i++)
    	{
    		cout << arr[i] << endl;
    	}
    	//释放数组 delete 后加 []
    	delete[] arr;
    
    	system("pause");
    
    	return 0;
    }
    
    

    2 引用

    2.1 引用的基本使用

    **作用: **给变量起别名

    语法: 数据类型 &别名 = 原名

    示例:

    int main() {
    
    	int a = 10;
    	int &b = a;
    
    	cout << "a = " << a << endl;
    	cout << "b = " << b << endl;
    
    	b = 100;
    
    	cout << "a = " << a << endl;
    	cout << "b = " << b << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    2.2 引用注意事项

    • 引用必须初始化
    • 引用在初始化后,不可以改变

    示例:

    int main() {
    
    	int a = 10;
    	int b = 20;
    	//int &c; //错误,引用必须初始化
    	int &c = a; //一旦初始化后,就不可以更改
    	c = b; //这是赋值操作,不是更改引用
    
    	cout << "a = " << a << endl;
    	cout << "b = " << b << endl;
    	cout << "c = " << c << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    2.3 引用做函数参数

    作用:函数传参时,可以利用引用的技术让形参修饰实参

    优点:可以简化指针修改实参

    示例:

    //1. 值传递
    void mySwap01(int a, int b) {
    	int temp = a;
    	a = b;
    	b = temp;
    }
    
    //2. 地址传递
    void mySwap02(int* a, int* b) {
    	int temp = *a;
    	*a = *b;
    	*b = temp;
    }
    
    //3. 引用传递
    void mySwap03(int& a, int& b) {
    	int temp = a;
    	a = b;
    	b = temp;
    }
    
    int main() {
    
    	int a = 10;
    	int b = 20;
    
    	mySwap01(a, b);
    	cout << "a:" << a << " b:" << b << endl;
    
    	mySwap02(&a, &b);
    	cout << "a:" << a << " b:" << b << endl;
    
    	mySwap03(a, b);
    	cout << "a:" << a << " b:" << b << endl;
    
    	system("pause");
    
    	return 0;
    }
    
    

    总结:通过引用参数产生的效果同按地址传递是一样的。引用的语法更清楚简单

    2.4 引用做函数返回值

    作用:引用是可以作为函数的返回值存在的

    注意:不要返回局部变量引用

    用法:函数调用作为左值

    示例:

    //返回局部变量引用
    int& test01() {
    	int a = 10; //局部变量
    	return a;
    }
    
    //返回静态变量引用
    int& test02() {
    	static int a = 20;
    	return a;
    }
    
    int main() {
    
    	//不能返回局部变量的引用
    	int& ref = test01();
    	cout << "ref = " << ref << endl;
    	cout << "ref = " << ref << endl;
    
    	//如果函数做左值,那么必须返回引用
    	int& ref2 = test02();
    	cout << "ref2 = " << ref2 << endl;
    	cout << "ref2 = " << ref2 << endl;
    
    	test02() = 1000;
    
    	cout << "ref2 = " << ref2 << endl;
    	cout << "ref2 = " << ref2 << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    2.5 引用的本质

    本质:引用的本质在c++内部实现是一个指针常量.

    讲解示例:

    //发现是引用,转换为 int* const ref = &a;
    void func(int& ref){
    	ref = 100; // ref是引用,转换为*ref = 100
    }
    int main(){
    	int a = 10;
        
        //自动转换为 int* const ref = &a; 指针常量是指针指向不可改,也说明为什么引用不可更改
    	int& ref = a; 
    	ref = 20; //内部发现ref是引用,自动帮我们转换为: *ref = 20;
        
    	cout << "a:" << a << endl;
    	cout << "ref:" << ref << endl;
        
    	func(a);
    	return 0;
    }
    

    结论:C++推荐用引用技术,因为语法方便,引用本质是指针常量,但是所有的指针操作编译器都帮我们做了

    2.6 常量引用

    作用:常量引用主要用来修饰形参,防止误操作

    在函数形参列表中,可以加const修饰形参,防止形参改变实参

    示例:

    //引用使用的场景,通常用来修饰形参
    void showValue(const int& v) {
    	//v += 10;
    	cout << v << endl;
    }
    
    int main() {
    
    	//int& ref = 10;  引用本身需要一个合法的内存空间,因此这行错误
    	//加入const就可以了,编译器优化代码,int temp = 10; const int& ref = temp;
    	const int& ref = 10;
    
    	//ref = 100;  //加入const后不可以修改变量
    	cout << ref << endl;
    
    	//函数中利用常量引用防止误操作修改实参
    	int a = 10;
    	showValue(a);
    
    	system("pause");
    
    	return 0;
    }
    

    3 函数提高

    3.1 函数默认参数

    在C++中,函数的形参列表中的形参是可以有默认值的。

    语法: 返回值类型 函数名 (参数= 默认值){}

    示例:

    int func(int a, int b = 10, int c = 10) {
    	return a + b + c;
    }
    
    //1. 如果某个位置参数有默认值,那么从这个位置往后,从左向右,必须都要有默认值
    //2. 如果函数声明有默认值,函数实现的时候就不能有默认参数
    int func2(int a = 10, int b = 10);
    int func2(int a, int b) {
    	return a + b;
    }
    
    int main() {
    
    	cout << "ret = " << func(20, 20) << endl;
    	cout << "ret = " << func(100) << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    3.2 函数占位参数

    C++中函数的形参列表里可以有占位参数,用来做占位,调用函数时必须填补该位置

    语法: 返回值类型 函数名 (数据类型){}

    在现阶段函数的占位参数存在意义不大,但是后面的课程中会用到该技术

    示例:

    //函数占位参数 ,占位参数也可以有默认参数
    void func(int a, int) {
    	cout << "this is func" << endl;
    }
    
    int main() {
    
    	func(10,10); //占位参数必须填补
    
    	system("pause");
    
    	return 0;
    }
    

    3.3 函数重载

    3.3.1 函数重载概述

    作用:函数名可以相同,提高复用性

    函数重载满足条件:

    • 同一个作用域下
    • 函数名称相同
    • 函数参数类型不同 或者 个数不同 或者 顺序不同

    注意: 函数的返回值不可以作为函数重载的条件

    示例:

    //函数重载需要函数都在同一个作用域下
    void func()
    {
    	cout << "func 的调用!" << endl;
    }
    void func(int a)
    {
    	cout << "func (int a) 的调用!" << endl;
    }
    void func(double a)
    {
    	cout << "func (double a)的调用!" << endl;
    }
    void func(int a ,double b)
    {
    	cout << "func (int a ,double b) 的调用!" << endl;
    }
    void func(double a ,int b)
    {
    	cout << "func (double a ,int b)的调用!" << endl;
    }
    
    //函数返回值不可以作为函数重载条件
    //int func(double a, int b)
    //{
    //	cout << "func (double a ,int b)的调用!" << endl;
    //}
    
    
    int main() {
    
    	func();
    	func(10);
    	func(3.14);
    	func(10,3.14);
    	func(3.14 , 10);
    	
    	system("pause");
    
    	return 0;
    }
    

    3.3.2 函数重载注意事项

    • 引用作为重载条件
    • 函数重载碰到函数默认参数

    示例:

    //函数重载注意事项
    //1、引用作为重载条件
    
    void func(int &a)
    {
    	cout << "func (int &a) 调用 " << endl;
    }
    
    void func(const int &a)
    {
    	cout << "func (const int &a) 调用 " << endl;
    }
    
    
    //2、函数重载碰到函数默认参数
    
    void func2(int a, int b = 10)
    {
    	cout << "func2(int a, int b = 10) 调用" << endl;
    }
    
    void func2(int a)
    {
    	cout << "func2(int a) 调用" << endl;
    }
    
    int main() {
    	
    	int a = 10;
    	func(a); //调用无const
    	func(10);//调用有const
    
    
    	//func2(10); //碰到默认参数产生歧义,需要避免
    
    	system("pause");
    
    	return 0;
    }
    

    4 类和对象

    C++面向对象的三大特性为:封装、继承、多态

    C++认为万事万物都皆为对象,对象上有其属性和行为

    例如:

    ​ 人可以作为对象,属性有姓名、年龄、身高、体重...,行为有走、跑、跳、吃饭、唱歌...

    ​ 车也可以作为对象,属性有轮胎、方向盘、车灯...,行为有载人、放音乐、放空调...

    ​ 具有相同性质的对象,我们可以抽象称为,人属于人类,车属于车类

    4.1 封装

    4.1.1 封装的意义

    封装是C++面向对象三大特性之一

    封装的意义:

    • 将属性和行为作为一个整体,表现生活中的事物
    • 将属性和行为加以权限控制

    封装意义一:

    ​ 在设计类的时候,属性和行为写在一起,表现事物

    语法: class 类名{ 访问权限: 属性 / 行为 };

    示例1:设计一个圆类,求圆的周长

    示例代码:

    //圆周率
    const double PI = 3.14;
    
    //1、封装的意义
    //将属性和行为作为一个整体,用来表现生活中的事物
    
    //封装一个圆类,求圆的周长
    //class代表设计一个类,后面跟着的是类名
    class Circle
    {
    public:  //访问权限  公共的权限
    
    	//属性
    	int m_r;//半径
    
    	//行为
    	//获取到圆的周长
    	double calculateZC()
    	{
    		//2 * pi  * r
    		//获取圆的周长
    		return  2 * PI * m_r;
    	}
    };
    
    int main() {
    
    	//通过圆类,创建圆的对象
    	// c1就是一个具体的圆
    	Circle c1;
    	c1.m_r = 10; //给圆对象的半径 进行赋值操作
    
    	//2 * pi * 10 = = 62.8
    	cout << "圆的周长为: " << c1.calculateZC() << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    示例2:设计一个学生类,属性有姓名和学号,可以给姓名和学号赋值,可以显示学生的姓名和学号

    示例2代码:

    //学生类
    class Student {
    public:
    	void setName(string name) {
    		m_name = name;
    	}
    	void setID(int id) {
    		m_id = id;
    	}
    
    	void showStudent() {
    		cout << "name:" << m_name << " ID:" << m_id << endl;
    	}
    public:
    	string m_name;
    	int m_id;
    };
    
    int main() {
    
    	Student stu;
    	stu.setName("德玛西亚");
    	stu.setID(250);
    	stu.showStudent();
    
    	system("pause");
    
    	return 0;
    }
    
    

    封装意义二:

    类在设计时,可以把属性和行为放在不同的权限下,加以控制

    访问权限有三种:

    1. public 公共权限
    2. protected 保护权限
    3. private 私有权限

    示例:

    //三种权限
    //公共权限  public     类内可以访问  类外可以访问
    //保护权限  protected  类内可以访问  类外不可以访问
    //私有权限  private    类内可以访问  类外不可以访问
    
    class Person
    {
    	//姓名  公共权限
    public:
    	string m_Name;
    
    	//汽车  保护权限
    protected:
    	string m_Car;
    
    	//银行卡密码  私有权限
    private:
    	int m_Password;
    
    public:
    	void func()
    	{
    		m_Name = "张三";
    		m_Car = "拖拉机";
    		m_Password = 123456;
    	}
    };
    
    int main() {
    
    	Person p;
    	p.m_Name = "李四";
    	//p.m_Car = "奔驰";  //保护权限类外访问不到
    	//p.m_Password = 123; //私有权限类外访问不到
    
    	system("pause");
    
    	return 0;
    }
    

    4.1.2 struct和class区别

    在C++中 struct和class唯一的区别就在于 默认的访问权限不同

    区别:

    • struct 默认权限为公共
    • class 默认权限为私有
    class C1
    {
    	int  m_A; //默认是私有权限
    };
    
    struct C2
    {
    	int m_A;  //默认是公共权限
    };
    
    int main() {
    
    	C1 c1;
    	c1.m_A = 10; //错误,访问权限是私有
    
    	C2 c2;
    	c2.m_A = 10; //正确,访问权限是公共
    
    	system("pause");
    
    	return 0;
    }
    

    4.1.3 成员属性设置为私有

    优点1:将所有成员属性设置为私有,可以自己控制读写权限

    优点2:对于写权限,我们可以检测数据的有效性

    示例:

    class Person {
    public:
    
    	//姓名设置可读可写
    	void setName(string name) {
    		m_Name = name;
    	}
    	string getName()
    	{
    		return m_Name;
    	}
    
    
    	//获取年龄 
    	int getAge() {
    		return m_Age;
    	}
    	//设置年龄
    	void setAge(int age) {
    		if (age < 0 || age > 150) {
    			cout << "你个老妖精!" << endl;
    			return;
    		}
    		m_Age = age;
    	}
    
    	//情人设置为只写
    	void setLover(string lover) {
    		m_Lover = lover;
    	}
    
    private:
    	string m_Name; //可读可写  姓名
    	
    	int m_Age; //只读  年龄
    
    	string m_Lover; //只写  情人
    };
    
    
    int main() {
    
    	Person p;
    	//姓名设置
    	p.setName("张三");
    	cout << "姓名: " << p.getName() << endl;
    
    	//年龄设置
    	p.setAge(50);
    	cout << "年龄: " << p.getAge() << endl;
    
    	//情人设置
    	p.setLover("苍井");
    	//cout << "情人: " << p.m_Lover << endl;  //只写属性,不可以读取
    
    	system("pause");
    
    	return 0;
    }
    

    练习案例1:设计立方体类

    设计立方体类(Cube)

    求出立方体的面积和体积

    分别用全局函数和成员函数判断两个立方体是否相等。

    练习案例2:点和圆的关系

    设计一个圆形类(Circle),和一个点类(Point),计算点和圆的关系。

    4.2 对象的初始化和清理

    • 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
    • C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。

    4.2.1 构造函数和析构函数

    对象的初始化和清理也是两个非常重要的安全问题

    ​ 一个对象或者变量没有初始状态,对其使用后果是未知

    ​ 同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

    c++利用了构造函数析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

    对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

    编译器提供的构造函数和析构函数是空实现。

    • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
    • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

    构造函数语法:类名(){}

    1. 构造函数,没有返回值也不写void
    2. 函数名称与类名相同
    3. 构造函数可以有参数,因此可以发生重载
    4. 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次

    析构函数语法: ~类名(){}

    1. 析构函数,没有返回值也不写void
    2. 函数名称与类名相同,在名称前加上符号 ~
    3. 析构函数不可以有参数,因此不可以发生重载
    4. 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
    class Person
    {
    public:
    	//构造函数
    	Person()
    	{
    		cout << "Person的构造函数调用" << endl;
    	}
    	//析构函数
    	~Person()
    	{
    		cout << "Person的析构函数调用" << endl;
    	}
    
    };
    
    void test01()
    {
    	Person p;
    }
    
    int main() {
    	
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.2.2 构造函数的分类及调用

    两种分类方式:

    ​ 按参数分为: 有参构造和无参构造

    ​ 按类型分为: 普通构造和拷贝构造

    三种调用方式:

    ​ 括号法

    ​ 显示法

    ​ 隐式转换法

    示例:

    //1、构造函数分类
    // 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
    // 按照类型分类分为 普通构造和拷贝构造
    
    class Person {
    public:
    	//无参(默认)构造函数
    	Person() {
    		cout << "无参构造函数!" << endl;
    	}
    	//有参构造函数
    	Person(int a) {
    		age = a;
    		cout << "有参构造函数!" << endl;
    	}
    	//拷贝构造函数
    	Person(const Person& p) {
    		age = p.age;
    		cout << "拷贝构造函数!" << endl;
    	}
    	//析构函数
    	~Person() {
    		cout << "析构函数!" << endl;
    	}
    public:
    	int age;
    };
    
    //2、构造函数的调用
    //调用无参构造函数
    void test01() {
    	Person p; //调用无参构造函数
    }
    
    //调用有参的构造函数
    void test02() {
    
    	//2.1  括号法,常用
    	Person p1(10);
    	//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
    	//Person p2();
    
    	//2.2 显式法
    	Person p2 = Person(10); 
    	Person p3 = Person(p2);
    	//Person(10)单独写就是匿名对象  当前行结束之后,马上析构
    
    	//2.3 隐式转换法
    	Person p4 = 10; // Person p4 = Person(10); 
    	Person p5 = p4; // Person p5 = Person(p4); 
    
    	//注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明
    	//Person p5(p4);
    }
    
    int main() {
    
    	test01();
    	//test02();
    
    	system("pause");
    
    	return 0;
    }
    

    4.2.3 拷贝构造函数调用时机

    C++中拷贝构造函数调用时机通常有三种情况

    • 使用一个已经创建完毕的对象来初始化一个新对象
    • 值传递的方式给函数参数传值
    • 以值方式返回局部对象

    示例:

    class Person {
    public:
    	Person() {
    		cout << "无参构造函数!" << endl;
    		mAge = 0;
    	}
    	Person(int age) {
    		cout << "有参构造函数!" << endl;
    		mAge = age;
    	}
    	Person(const Person& p) {
    		cout << "拷贝构造函数!" << endl;
    		mAge = p.mAge;
    	}
    	//析构函数在释放内存之前调用
    	~Person() {
    		cout << "析构函数!" << endl;
    	}
    public:
    	int mAge;
    };
    
    //1. 使用一个已经创建完毕的对象来初始化一个新对象
    void test01() {
    
    	Person man(100); //p对象已经创建完毕
    	Person newman(man); //调用拷贝构造函数
    	Person newman2 = man; //拷贝构造
    
    	//Person newman3;
    	//newman3 = man; //不是调用拷贝构造函数,赋值操作
    }
    
    //2. 值传递的方式给函数参数传值
    //相当于Person p1 = p;
    void doWork(Person p1) {}
    void test02() {
    	Person p; //无参构造函数
    	doWork(p);
    }
    
    //3. 以值方式返回局部对象
    Person doWork2()
    {
    	Person p1;
    	cout << (int *)&p1 << endl;
    	return p1;
    }
    
    void test03()
    {
    	Person p = doWork2();
    	cout << (int *)&p << endl;
    }
    
    
    int main() {
    
    	//test01();
    	//test02();
    	test03();
    
    	system("pause");
    
    	return 0;
    }
    

    4.2.4 构造函数调用规则

    默认情况下,c++编译器至少给一个类添加3个函数

    1.默认构造函数(无参,函数体为空)

    2.默认析构函数(无参,函数体为空)

    3.默认拷贝构造函数,对属性进行值拷贝

    构造函数调用规则如下:

    • 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造

    • 如果用户定义拷贝构造函数,c++不会再提供其他构造函数

    示例:

    class Person {
    public:
    	//无参(默认)构造函数
    	Person() {
    		cout << "无参构造函数!" << endl;
    	}
    	//有参构造函数
    	Person(int a) {
    		age = a;
    		cout << "有参构造函数!" << endl;
    	}
    	//拷贝构造函数
    	Person(const Person& p) {
    		age = p.age;
    		cout << "拷贝构造函数!" << endl;
    	}
    	//析构函数
    	~Person() {
    		cout << "析构函数!" << endl;
    	}
    public:
    	int age;
    };
    
    void test01()
    {
    	Person p1(18);
    	//如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作
    	Person p2(p1);
    
    	cout << "p2的年龄为: " << p2.age << endl;
    }
    
    void test02()
    {
    	//如果用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造
    	Person p1; //此时如果用户自己没有提供默认构造,会出错
    	Person p2(10); //用户提供的有参
    	Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供
    
    	//如果用户提供拷贝构造,编译器不会提供其他构造函数
    	Person p4; //此时如果用户自己没有提供默认构造,会出错
    	Person p5(10); //此时如果用户自己没有提供有参,会出错
    	Person p6(p5); //用户自己提供拷贝构造
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.2.5 深拷贝与浅拷贝

    深浅拷贝是面试经典问题,也是常见的一个坑

    浅拷贝:简单的赋值拷贝操作

    深拷贝:在堆区重新申请空间,进行拷贝操作

    示例:

    class Person {
    public:
    	//无参(默认)构造函数
    	Person() {
    		cout << "无参构造函数!" << endl;
    	}
    	//有参构造函数
    	Person(int age ,int height) {
    		
    		cout << "有参构造函数!" << endl;
    
    		m_age = age;
    		m_height = new int(height);
    		
    	}
    	//拷贝构造函数  
    	Person(const Person& p) {
    		cout << "拷贝构造函数!" << endl;
    		//如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题
    		m_age = p.m_age;
    		m_height = new int(*p.m_height);
    		
    	}
    
    	//析构函数
    	~Person() {
    		cout << "析构函数!" << endl;
    		if (m_height != NULL)
    		{
    			delete m_height;
    		}
    	}
    public:
    	int m_age;
    	int* m_height;
    };
    
    void test01()
    {
    	Person p1(18, 180);
    
    	Person p2(p1);
    
    	cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl;
    
    	cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题

    4.2.6 初始化列表

    作用:

    C++提供了初始化列表语法,用来初始化属性

    语法:构造函数():属性1(值1),属性2(值2)... {}

    示例:

    class Person {
    public:
    
    	////传统方式初始化
    	//Person(int a, int b, int c) {
    	//	m_A = a;
    	//	m_B = b;
    	//	m_C = c;
    	//}
    
    	//初始化列表方式初始化
    	Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
    	void PrintPerson() {
    		cout << "mA:" << m_A << endl;
    		cout << "mB:" << m_B << endl;
    		cout << "mC:" << m_C << endl;
    	}
    private:
    	int m_A;
    	int m_B;
    	int m_C;
    };
    
    int main() {
    
    	Person p(1, 2, 3);
    	p.PrintPerson();
    
    
    	system("pause");
    
    	return 0;
    }
    

    4.2.7 类对象作为类成员

    C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员

    例如:

    class A {}
    class B
    {
        A a;
    }
    

    B类中有对象A作为成员,A为对象成员

    那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?

    示例:

    class Phone
    {
    public:
    	Phone(string name)
    	{
    		m_PhoneName = name;
    		cout << "Phone构造" << endl;
    	}
    
    	~Phone()
    	{
    		cout << "Phone析构" << endl;
    	}
    
    	string m_PhoneName;
    
    };
    
    
    class Person
    {
    public:
    
    	//初始化列表可以告诉编译器调用哪一个构造函数
    	Person(string name, string pName) :m_Name(name), m_Phone(pName)
    	{
    		cout << "Person构造" << endl;
    	}
    
    	~Person()
    	{
    		cout << "Person析构" << endl;
    	}
    
    	void playGame()
    	{
    		cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;
    	}
    
    	string m_Name;
    	Phone m_Phone;
    
    };
    void test01()
    {
    	//当类中成员是其他类对象时,我们称该成员为 对象成员
    	//构造的顺序是 :先调用对象成员的构造,再调用本类构造
    	//析构顺序与构造相反
    	Person p("张三" , "苹果X");
    	p.playGame();
    
    }
    
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.2.8 静态成员

    静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

    静态成员分为:

    • 静态成员变量
      • 所有对象共享同一份数据
      • 在编译阶段分配内存
      • 类内声明,类外初始化
    • 静态成员函数
      • 所有对象共享同一个函数
      • 静态成员函数只能访问静态成员变量

    示例1 :静态成员变量

    class Person
    {
    	
    public:
    
    	static int m_A; //静态成员变量
    
    	//静态成员变量特点:
    	//1 在编译阶段分配内存
    	//2 类内声明,类外初始化
    	//3 所有对象共享同一份数据
    
    private:
    	static int m_B; //静态成员变量也是有访问权限的
    };
    int Person::m_A = 10;
    int Person::m_B = 10;
    
    void test01()
    {
    	//静态成员变量两种访问方式
    
    	//1、通过对象
    	Person p1;
    	p1.m_A = 100;
    	cout << "p1.m_A = " << p1.m_A << endl;
    
    	Person p2;
    	p2.m_A = 200;
    	cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
    	cout << "p2.m_A = " << p2.m_A << endl;
    
    	//2、通过类名
    	cout << "m_A = " << Person::m_A << endl;
    
    
    	//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    示例2:静态成员函数

    class Person
    {
    
    public:
    
    	//静态成员函数特点:
    	//1 程序共享一个函数
    	//2 静态成员函数只能访问静态成员变量
    	
    	static void func()
    	{
    		cout << "func调用" << endl;
    		m_A = 100;
    		//m_B = 100; //错误,不可以访问非静态成员变量
    	}
    
    	static int m_A; //静态成员变量
    	int m_B; // 
    private:
    
    	//静态成员函数也是有访问权限的
    	static void func2()
    	{
    		cout << "func2调用" << endl;
    	}
    };
    int Person::m_A = 10;
    
    
    void test01()
    {
    	//静态成员变量两种访问方式
    
    	//1、通过对象
    	Person p1;
    	p1.func();
    
    	//2、通过类名
    	Person::func();
    
    
    	//Person::func2(); //私有权限访问不到
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.3 C++对象模型和this指针

    4.3.1 成员变量和成员函数分开存储

    在C++中,类内的成员变量和成员函数分开存储

    只有非静态成员变量才属于类的对象上

    class Person {
    public:
    	Person() {
    		mA = 0;
    	}
    	//非静态成员变量占对象空间
    	int mA;
    	//静态成员变量不占对象空间
    	static int mB; 
    	//函数也不占对象空间,所有函数共享一个函数实例
    	void func() {
    		cout << "mA:" << this->mA << endl;
    	}
    	//静态成员函数也不占对象空间
    	static void sfunc() {
    	}
    };
    
    int main() {
    
    	cout << sizeof(Person) << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    4.3.2 this指针概念

    通过4.3.1我们知道在C++中成员变量和成员函数是分开存储的

    每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码

    那么问题是:这一块代码是如何区分那个对象调用自己的呢?

    c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象

    this指针是隐含每一个非静态成员函数内的一种指针

    this指针不需要定义,直接使用即可

    this指针的用途:

    • 当形参和成员变量同名时,可用this指针来区分
    • 在类的非静态成员函数中返回对象本身,可使用return *this
    class Person
    {
    public:
    
    	Person(int age)
    	{
    		//1、当形参和成员变量同名时,可用this指针来区分
    		this->age = age;
    	}
    
    	Person& PersonAddPerson(Person p)
    	{
    		this->age += p.age;
    		//返回对象本身
    		return *this;
    	}
    
    	int age;
    };
    
    void test01()
    {
    	Person p1(10);
    	cout << "p1.age = " << p1.age << endl;
    
    	Person p2(10);
    	p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1);
    	cout << "p2.age = " << p2.age << endl;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.3.3 空指针访问成员函数

    C++中空指针也是可以调用成员函数的,但是也要注意有没有用到this指针

    如果用到this指针,需要加以判断保证代码的健壮性

    示例:

    //空指针访问成员函数
    class Person {
    public:
    
    	void ShowClassName() {
    		cout << "我是Person类!" << endl;
    	}
    
    	void ShowPerson() {
    		if (this == NULL) {
    			return;
    		}
    		cout << mAge << endl;
    	}
    
    public:
    	int mAge;
    };
    
    void test01()
    {
    	Person * p = NULL;
    	p->ShowClassName(); //空指针,可以调用成员函数
    	p->ShowPerson();  //但是如果成员函数中用到了this指针,就不可以了
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.3.4 const修饰成员函数

    常函数:

    • 成员函数后加const后我们称为这个函数为常函数
    • 常函数内不可以修改成员属性
    • 成员属性声明时加关键字mutable后,在常函数中依然可以修改

    常对象:

    • 声明对象前加const称该对象为常对象
    • 常对象只能调用常函数

    示例:

    class Person {
    public:
    	Person() {
    		m_A = 0;
    		m_B = 0;
    	}
    
    	//this指针的本质是一个指针常量,指针的指向不可修改
    	//如果想让指针指向的值也不可以修改,需要声明常函数
    	void ShowPerson() const {
    		//const Type* const pointer;
    		//this = NULL; //不能修改指针的指向 Person* const this;
    		//this->mA = 100; //但是this指针指向的对象的数据是可以修改的
    
    		//const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量
    		this->m_B = 100;
    	}
    
    	void MyFunc() const {
    		//mA = 10000;
    	}
    
    public:
    	int m_A;
    	mutable int m_B; //可修改 可变的
    };
    
    
    //const修饰对象  常对象
    void test01() {
    
    	const Person person; //常量对象  
    	cout << person.m_A << endl;
    	//person.mA = 100; //常对象不能修改成员变量的值,但是可以访问
    	person.m_B = 100; //但是常对象可以修改mutable修饰成员变量
    
    	//常对象访问成员函数
    	person.MyFunc(); //常对象不能调用const的函数
    
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.4 友元

    生活中你的家有客厅(Public),有你的卧室(Private)

    客厅所有来的客人都可以进去,但是你的卧室是私有的,也就是说只有你能进去

    但是呢,你也可以允许你的好闺蜜好基友进去。

    在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术

    友元的目的就是让一个函数或者类 访问另一个类中私有成员

    友元的关键字为 friend

    友元的三种实现

    • 全局函数做友元
    • 类做友元
    • 成员函数做友元

    4.4.1 全局函数做友元

    class Building
    {
    	//告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容
    	friend void goodGay(Building * building);
    
    public:
    
    	Building()
    	{
    		this->m_SittingRoom = "客厅";
    		this->m_BedRoom = "卧室";
    	}
    
    
    public:
    	string m_SittingRoom; //客厅
    
    private:
    	string m_BedRoom; //卧室
    };
    
    
    void goodGay(Building * building)
    {
    	cout << "好基友正在访问: " << building->m_SittingRoom << endl;
    	cout << "好基友正在访问: " << building->m_BedRoom << endl;
    }
    
    
    void test01()
    {
    	Building b;
    	goodGay(&b);
    }
    
    int main(){
    
    	test01();
    
    	system("pause");
    	return 0;
    }
    

    4.4.2 类做友元

    class Building;
    class goodGay
    {
    public:
    
    	goodGay();
    	void visit();
    
    private:
    	Building *building;
    };
    
    
    class Building
    {
    	//告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容
    	friend class goodGay;
    
    public:
    	Building();
    
    public:
    	string m_SittingRoom; //客厅
    private:
    	string m_BedRoom;//卧室
    };
    
    Building::Building()
    {
    	this->m_SittingRoom = "客厅";
    	this->m_BedRoom = "卧室";
    }
    
    goodGay::goodGay()
    {
    	building = new Building;
    }
    
    void goodGay::visit()
    {
    	cout << "好基友正在访问" << building->m_SittingRoom << endl;
    	cout << "好基友正在访问" << building->m_BedRoom << endl;
    }
    
    void test01()
    {
    	goodGay gg;
    	gg.visit();
    
    }
    
    int main(){
    
    	test01();
    
    	system("pause");
    	return 0;
    }
    

    4.4.3 成员函数做友元

    class Building;
    class goodGay
    {
    public:
    
    	goodGay();
    	void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容
    	void visit2(); 
    
    private:
    	Building *building;
    };
    
    
    class Building
    {
    	//告诉编译器  goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容
    	friend void goodGay::visit();
    
    public:
    	Building();
    
    public:
    	string m_SittingRoom; //客厅
    private:
    	string m_BedRoom;//卧室
    };
    
    Building::Building()
    {
    	this->m_SittingRoom = "客厅";
    	this->m_BedRoom = "卧室";
    }
    
    goodGay::goodGay()
    {
    	building = new Building;
    }
    
    void goodGay::visit()
    {
    	cout << "好基友正在访问" << building->m_SittingRoom << endl;
    	cout << "好基友正在访问" << building->m_BedRoom << endl;
    }
    
    void goodGay::visit2()
    {
    	cout << "好基友正在访问" << building->m_SittingRoom << endl;
    	//cout << "好基友正在访问" << building->m_BedRoom << endl;
    }
    
    void test01()
    {
    	goodGay  gg;
    	gg.visit();
    
    }
    
    int main(){
        
    	test01();
    
    	system("pause");
    	return 0;
    }
    

    4.5 运算符重载

    运算符重载概念:对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型

    4.5.1 加号运算符重载

    作用:实现两个自定义数据类型相加的运算

    class Person {
    public:
    	Person() {};
    	Person(int a, int b)
    	{
    		this->m_A = a;
    		this->m_B = b;
    	}
    	//成员函数实现 + 号运算符重载
    	Person operator+(const Person& p) {
    		Person temp;
    		temp.m_A = this->m_A + p.m_A;
    		temp.m_B = this->m_B + p.m_B;
    		return temp;
    	}
    
    
    public:
    	int m_A;
    	int m_B;
    };
    
    //全局函数实现 + 号运算符重载
    //Person operator+(const Person& p1, const Person& p2) {
    //	Person temp(0, 0);
    //	temp.m_A = p1.m_A + p2.m_A;
    //	temp.m_B = p1.m_B + p2.m_B;
    //	return temp;
    //}
    
    //运算符重载 可以发生函数重载 
    Person operator+(const Person& p2, int val)  
    {
    	Person temp;
    	temp.m_A = p2.m_A + val;
    	temp.m_B = p2.m_B + val;
    	return temp;
    }
    
    void test() {
    
    	Person p1(10, 10);
    	Person p2(20, 20);
    
    	//成员函数方式
    	Person p3 = p2 + p1;  //相当于 p2.operaor+(p1)
    	cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl;
    
    
    	Person p4 = p3 + 10; //相当于 operator+(p3,10)
    	cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;
    
    }
    
    int main() {
    
    	test();
    
    	system("pause");
    
    	return 0;
    }
    

    总结1:对于内置的数据类型的表达式的的运算符是不可能改变的

    总结2:不要滥用运算符重载

    4.5.2 左移运算符重载

    作用:可以输出自定义数据类型

    class Person {
    	friend ostream& operator<<(ostream& out, Person& p);
    
    public:
    
    	Person(int a, int b)
    	{
    		this->m_A = a;
    		this->m_B = b;
    	}
    
    	//成员函数 实现不了  p << cout 不是我们想要的效果
    	//void operator<<(Person& p){
    	//}
    
    private:
    	int m_A;
    	int m_B;
    };
    
    //全局函数实现左移重载
    //ostream对象只能有一个
    ostream& operator<<(ostream& out, Person& p) {
    	out << "a:" << p.m_A << " b:" << p.m_B;
    	return out;
    }
    
    void test() {
    
    	Person p1(10, 20);
    
    	cout << p1 << "hello world" << endl; //链式编程
    }
    
    int main() {
    
    	test();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:重载左移运算符配合友元可以实现输出自定义数据类型

    4.5.3 递增运算符重载

    作用: 通过重载递增运算符,实现自己的整型数据

    class MyInteger {
    
    	friend ostream& operator<<(ostream& out, MyInteger myint);
    
    public:
    	MyInteger() {
    		m_Num = 0;
    	}
    	//前置++
    	MyInteger& operator++() {
    		//先++
    		m_Num++;
    		//再返回
    		return *this;
    	}
    
    	//后置++
    	MyInteger operator++(int) {
    		//先返回
    		MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++;
    		m_Num++;
    		return temp;
    	}
    
    private:
    	int m_Num;
    };
    
    
    ostream& operator<<(ostream& out, MyInteger myint) {
    	out << myint.m_Num;
    	return out;
    }
    
    
    //前置++ 先++ 再返回
    void test01() {
    	MyInteger myInt;
    	cout << ++myInt << endl;
    	cout << myInt << endl;
    }
    
    //后置++ 先返回 再++
    void test02() {
    
    	MyInteger myInt;
    	cout << myInt++ << endl;
    	cout << myInt << endl;
    }
    
    int main() {
    
    	test01();
    	//test02();
    
    	system("pause");
    
    	return 0;
    }
    

    总结: 前置递增返回引用,后置递增返回值

    4.5.4 赋值运算符重载

    c++编译器至少给一个类添加4个函数

    1. 默认构造函数(无参,函数体为空)
    2. 默认析构函数(无参,函数体为空)
    3. 默认拷贝构造函数,对属性进行值拷贝
    4. 赋值运算符 operator=, 对属性进行值拷贝

    如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题

    示例:

    class Person
    {
    public:
    
    	Person(int age)
    	{
    		//将年龄数据开辟到堆区
    		m_Age = new int(age);
    	}
    
    	//重载赋值运算符 
    	Person& operator=(Person &p)
    	{
    		if (m_Age != NULL)
    		{
    			delete m_Age;
    			m_Age = NULL;
    		}
    		//编译器提供的代码是浅拷贝
    		//m_Age = p.m_Age;
    
    		//提供深拷贝 解决浅拷贝的问题
    		m_Age = new int(*p.m_Age);
    
    		//返回自身
    		return *this;
    	}
    
    
    	~Person()
    	{
    		if (m_Age != NULL)
    		{
    			delete m_Age;
    			m_Age = NULL;
    		}
    	}
    
    	//年龄的指针
    	int *m_Age;
    
    };
    
    
    void test01()
    {
    	Person p1(18);
    
    	Person p2(20);
    
    	Person p3(30);
    
    	p3 = p2 = p1; //赋值操作
    
    	cout << "p1的年龄为:" << *p1.m_Age << endl;
    
    	cout << "p2的年龄为:" << *p2.m_Age << endl;
    
    	cout << "p3的年龄为:" << *p3.m_Age << endl;
    }
    
    int main() {
    
    	test01();
    
    	//int a = 10;
    	//int b = 20;
    	//int c = 30;
    
    	//c = b = a;
    	//cout << "a = " << a << endl;
    	//cout << "b = " << b << endl;
    	//cout << "c = " << c << endl;
    
    	system("pause");
    
    	return 0;
    }
    

    4.5.5 关系运算符重载

    作用:重载关系运算符,可以让两个自定义类型对象进行对比操作

    示例:

    class Person
    {
    public:
    	Person(string name, int age)
    	{
    		this->m_Name = name;
    		this->m_Age = age;
    	};
    
    	bool operator==(Person & p)
    	{
    		if (this->m_Name == p.m_Name && this->m_Age == p.m_Age)
    		{
    			return true;
    		}
    		else
    		{
    			return false;
    		}
    	}
    
    	bool operator!=(Person & p)
    	{
    		if (this->m_Name == p.m_Name && this->m_Age == p.m_Age)
    		{
    			return false;
    		}
    		else
    		{
    			return true;
    		}
    	}
    
    	string m_Name;
    	int m_Age;
    };
    
    void test01()
    {
    	//int a = 0;
    	//int b = 0;
    
    	Person a("孙悟空", 18);
    	Person b("孙悟空", 18);
    
    	if (a == b)
    	{
    		cout << "a和b相等" << endl;
    	}
    	else
    	{
    		cout << "a和b不相等" << endl;
    	}
    
    	if (a != b)
    	{
    		cout << "a和b不相等" << endl;
    	}
    	else
    	{
    		cout << "a和b相等" << endl;
    	}
    }
    
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.5.6 函数调用运算符重载

    • 函数调用运算符 () 也可以重载
    • 由于重载后使用的方式非常像函数的调用,因此称为仿函数
    • 仿函数没有固定写法,非常灵活

    示例:

    class MyPrint
    {
    public:
    	void operator()(string text)
    	{
    		cout << text << endl;
    	}
    
    };
    void test01()
    {
    	//重载的()操作符 也称为仿函数
    	MyPrint myFunc;
    	myFunc("hello world");
    }
    
    
    class MyAdd
    {
    public:
    	int operator()(int v1, int v2)
    	{
    		return v1 + v2;
    	}
    };
    
    void test02()
    {
    	MyAdd add;
    	int ret = add(10, 10);
    	cout << "ret = " << ret << endl;
    
    	//匿名对象调用  
    	cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
    }
    
    int main() {
    
    	test01();
    	test02();
    
    	system("pause");
    
    	return 0;
    }
    

    4.6 继承

    继承是面向对象三大特性之一

    有些类与类之间存在特殊的关系,例如下图中:

    我们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有自己的特性。

    这个时候我们就可以考虑利用继承的技术,减少重复代码

    4.6.1 继承的基本语法

    例如我们看到很多网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不同

    接下来我们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处

    普通实现:

    //Java页面
    class Java 
    {
    public:
    	void header()
    	{
    		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
    	}
    	void footer()
    	{
    		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
    	}
    	void left()
    	{
    		cout << "Java,Python,C++...(公共分类列表)" << endl;
    	}
    	void content()
    	{
    		cout << "JAVA学科视频" << endl;
    	}
    };
    //Python页面
    class Python
    {
    public:
    	void header()
    	{
    		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
    	}
    	void footer()
    	{
    		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
    	}
    	void left()
    	{
    		cout << "Java,Python,C++...(公共分类列表)" << endl;
    	}
    	void content()
    	{
    		cout << "Python学科视频" << endl;
    	}
    };
    //C++页面
    class CPP 
    {
    public:
    	void header()
    	{
    		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
    	}
    	void footer()
    	{
    		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
    	}
    	void left()
    	{
    		cout << "Java,Python,C++...(公共分类列表)" << endl;
    	}
    	void content()
    	{
    		cout << "C++学科视频" << endl;
    	}
    };
    
    void test01()
    {
    	//Java页面
    	cout << "Java下载视频页面如下: " << endl;
    	Java ja;
    	ja.header();
    	ja.footer();
    	ja.left();
    	ja.content();
    	cout << "--------------------" << endl;
    
    	//Python页面
    	cout << "Python下载视频页面如下: " << endl;
    	Python py;
    	py.header();
    	py.footer();
    	py.left();
    	py.content();
    	cout << "--------------------" << endl;
    
    	//C++页面
    	cout << "C++下载视频页面如下: " << endl;
    	CPP cp;
    	cp.header();
    	cp.footer();
    	cp.left();
    	cp.content();
    
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    继承实现:

    //公共页面
    class BasePage
    {
    public:
    	void header()
    	{
    		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
    	}
    
    	void footer()
    	{
    		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
    	}
    	void left()
    	{
    		cout << "Java,Python,C++...(公共分类列表)" << endl;
    	}
    
    };
    
    //Java页面
    class Java : public BasePage
    {
    public:
    	void content()
    	{
    		cout << "JAVA学科视频" << endl;
    	}
    };
    //Python页面
    class Python : public BasePage
    {
    public:
    	void content()
    	{
    		cout << "Python学科视频" << endl;
    	}
    };
    //C++页面
    class CPP : public BasePage
    {
    public:
    	void content()
    	{
    		cout << "C++学科视频" << endl;
    	}
    };
    
    void test01()
    {
    	//Java页面
    	cout << "Java下载视频页面如下: " << endl;
    	Java ja;
    	ja.header();
    	ja.footer();
    	ja.left();
    	ja.content();
    	cout << "--------------------" << endl;
    
    	//Python页面
    	cout << "Python下载视频页面如下: " << endl;
    	Python py;
    	py.header();
    	py.footer();
    	py.left();
    	py.content();
    	cout << "--------------------" << endl;
    
    	//C++页面
    	cout << "C++下载视频页面如下: " << endl;
    	CPP cp;
    	cp.header();
    	cp.footer();
    	cp.left();
    	cp.content();
    
    
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:

    继承的好处:可以减少重复的代码

    class A : public B;

    A 类称为子类 或 派生类

    B 类称为父类 或 基类

    派生类中的成员,包含两大部分

    一类是从基类继承过来的,一类是自己增加的成员。

    从基类继承过过来的表现其共性,而新增的成员体现了其个性。

    4.6.2 继承方式

    继承的语法:class 子类 : 继承方式 父类

    继承方式一共有三种:

    • 公共继承
    • 保护继承
    • 私有继承

    示例:

    class Base1
    {
    public: 
    	int m_A;
    protected:
    	int m_B;
    private:
    	int m_C;
    };
    
    //公共继承
    class Son1 :public Base1
    {
    public:
    	void func()
    	{
    		m_A; //可访问 public权限
    		m_B; //可访问 protected权限
    		//m_C; //不可访问
    	}
    };
    
    void myClass()
    {
    	Son1 s1;
    	s1.m_A; //其他类只能访问到公共权限
    }
    
    //保护继承
    class Base2
    {
    public:
    	int m_A;
    protected:
    	int m_B;
    private:
    	int m_C;
    };
    class Son2:protected Base2
    {
    public:
    	void func()
    	{
    		m_A; //可访问 protected权限
    		m_B; //可访问 protected权限
    		//m_C; //不可访问
    	}
    };
    void myClass2()
    {
    	Son2 s;
    	//s.m_A; //不可访问
    }
    
    //私有继承
    class Base3
    {
    public:
    	int m_A;
    protected:
    	int m_B;
    private:
    	int m_C;
    };
    class Son3:private Base3
    {
    public:
    	void func()
    	{
    		m_A; //可访问 private权限
    		m_B; //可访问 private权限
    		//m_C; //不可访问
    	}
    };
    class GrandSon3 :public Son3
    {
    public:
    	void func()
    	{
    		//Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到
    		//m_A;
    		//m_B;
    		//m_C;
    	}
    };
    

    4.6.3 继承中的对象模型

    问题:从父类继承过来的成员,哪些属于子类对象中?

    示例:

    class Base
    {
    public:
    	int m_A;
    protected:
    	int m_B;
    private:
    	int m_C; //私有成员只是被隐藏了,但是还是会继承下去
    };
    
    //公共继承
    class Son :public Base
    {
    public:
    	int m_D;
    };
    
    void test01()
    {
    	cout << "sizeof Son = " << sizeof(Son) << endl;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    利用工具查看:

    打开工具窗口后,定位到当前CPP文件的盘符

    然后输入: cl /d1 reportSingleClassLayout查看的类名 所属文件名

    结论: 父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到

    4.6.4 继承中构造和析构顺序

    子类继承父类后,当创建子类对象,也会调用父类的构造函数
    问题:父类和子类的构造和析构顺序是谁先谁后?

    示例:

    class Base 
    {
    public:
    	Base()
    	{
    		cout << "Base构造函数!" << endl;
    	}
    	~Base()
    	{
    		cout << "Base析构函数!" << endl;
    	}
    };
    
    class Son : public Base
    {
    public:
    	Son()
    	{
    		cout << "Son构造函数!" << endl;
    	}
    	~Son()
    	{
    		cout << "Son析构函数!" << endl;
    	}
    
    };
    
    
    void test01()
    {
    	//继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
    	Son s;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反

    4.6.5 继承同名成员处理方式

    问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?

    • 访问子类同名成员 直接访问即可
    • 访问父类同名成员 需要加作用域

    示例:

    class Base {
    public:
    	Base()
    	{
    		m_A = 100;
    	}
    
    	void func()
    	{
    		cout << "Base - func()调用" << endl;
    	}
    
    	void func(int a)
    	{
    		cout << "Base - func(int a)调用" << endl;
    	}
    
    public:
    	int m_A;
    };
    
    class Son : public Base {
    public:
    	Son()
    	{
    		m_A = 200;
    	}
    
    	//当子类与父类拥有同名的成员函数,子类会隐藏父类中所有版本的同名成员函数
    	//如果想访问父类中被隐藏的同名成员函数,需要加父类的作用域
    	void func()
    	{
    		cout << "Son - func()调用" << endl;
    	}
    public:
    	int m_A;
    };
    
    void test01()
    {
    	Son s;
    
    	cout << "Son下的m_A = " << s.m_A << endl;
    	cout << "Base下的m_A = " << s.Base::m_A << endl;
    
    	s.func();
    	s.Base::func();
    	s.Base::func(10);
    
    }
    int main() {
    
    	test01();
    
    	system("pause");
    	return EXIT_SUCCESS;
    }
    

    总结:

    1. 子类对象可以直接访问到子类中同名成员
    2. 子类对象加作用域可以访问到父类同名成员
    3. 当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数

    4.6.6 继承同名静态成员处理方式

    问题:继承中同名的静态成员在子类对象上如何进行访问?

    静态成员和非静态成员出现同名,处理方式一致

    • 访问子类同名成员 直接访问即可
    • 访问父类同名成员 需要加作用域

    示例:

    class Base {
    public:
    	static void func()
    	{
    		cout << "Base - static void func()" << endl;
    	}
    	static void func(int a)
    	{
    		cout << "Base - static void func(int a)" << endl;
    	}
    
    	static int m_A;
    };
    
    int Base::m_A = 100;
    
    class Son : public Base {
    public:
    	static void func()
    	{
    		cout << "Son - static void func()" << endl;
    	}
    	static int m_A;
    };
    
    int Son::m_A = 200;
    
    //同名成员属性
    void test01()
    {
    	//通过对象访问
    	cout << "通过对象访问: " << endl;
    	Son s;
    	cout << "Son  下 m_A = " << s.m_A << endl;
    	cout << "Base 下 m_A = " << s.Base::m_A << endl;
    
    	//通过类名访问
    	cout << "通过类名访问: " << endl;
    	cout << "Son  下 m_A = " << Son::m_A << endl;
    	cout << "Base 下 m_A = " << Son::Base::m_A << endl;
    }
    
    //同名成员函数
    void test02()
    {
    	//通过对象访问
    	cout << "通过对象访问: " << endl;
    	Son s;
    	s.func();
    	s.Base::func();
    
    	cout << "通过类名访问: " << endl;
    	Son::func();
    	Son::Base::func();
    	//出现同名,子类会隐藏掉父类中所有同名成员函数,需要加作作用域访问
    	Son::Base::func(100);
    }
    int main() {
    
    	//test01();
    	test02();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:同名静态成员处理方式和非静态处理方式一样,只不过有两种访问的方式(通过对象 和 通过类名)

    4.6.7 多继承语法

    C++允许一个类继承多个类

    语法: class 子类 :继承方式 父类1 , 继承方式 父类2...

    多继承可能会引发父类中有同名成员出现,需要加作用域区分

    C++实际开发中不建议用多继承

    示例:

    class Base1 {
    public:
    	Base1()
    	{
    		m_A = 100;
    	}
    public:
    	int m_A;
    };
    
    class Base2 {
    public:
    	Base2()
    	{
    		m_A = 200;  //开始是m_B 不会出问题,但是改为mA就会出现不明确
    	}
    public:
    	int m_A;
    };
    
    //语法:class 子类:继承方式 父类1 ,继承方式 父类2 
    class Son : public Base2, public Base1 
    {
    public:
    	Son()
    	{
    		m_C = 300;
    		m_D = 400;
    	}
    public:
    	int m_C;
    	int m_D;
    };
    
    
    //多继承容易产生成员同名的情况
    //通过使用类名作用域可以区分调用哪一个基类的成员
    void test01()
    {
    	Son s;
    	cout << "sizeof Son = " << sizeof(s) << endl;
    	cout << s.Base1::m_A << endl;
    	cout << s.Base2::m_A << endl;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结: 多继承中如果父类中出现了同名情况,子类使用时候要加作用域

    4.6.8 菱形继承

    菱形继承概念:

    ​ 两个派生类继承同一个基类

    ​ 又有某个类同时继承者两个派生类

    ​ 这种继承被称为菱形继承,或者钻石继承

    典型的菱形继承案例:

    菱形继承问题:

    1. 羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。
      
    2. 草泥马继承自动物的数据继承了两份,其实我们应该清楚,这份数据我们只需要一份就可以。
      

    示例:

    class Animal
    {
    public:
    	int m_Age;
    };
    
    //继承前加virtual关键字后,变为虚继承
    //此时公共的父类Animal称为虚基类
    class Sheep : virtual public Animal {};
    class Tuo   : virtual public Animal {};
    class SheepTuo : public Sheep, public Tuo {};
    
    void test01()
    {
    	SheepTuo st;
    	st.Sheep::m_Age = 100;
    	st.Tuo::m_Age = 200;
    
    	cout << "st.Sheep::m_Age = " << st.Sheep::m_Age << endl;
    	cout << "st.Tuo::m_Age = " <<  st.Tuo::m_Age << endl;
    	cout << "st.m_Age = " << st.m_Age << endl;
    }
    
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:

    • 菱形继承带来的主要问题是子类继承两份相同的数据,导致资源浪费以及毫无意义
    • 利用虚继承可以解决菱形继承问题

    4.7 多态

    4.7.1 多态的基本概念

    多态是C++面向对象三大特性之一

    多态分为两类

    • 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
    • 动态多态: 派生类和虚函数实现运行时多态

    静态多态和动态多态区别:

    • 静态多态的函数地址早绑定 - 编译阶段确定函数地址
    • 动态多态的函数地址晚绑定 - 运行阶段确定函数地址

    下面通过案例进行讲解多态

    class Animal
    {
    public:
    	//Speak函数就是虚函数
    	//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。
    	virtual void speak()
    	{
    		cout << "动物在说话" << endl;
    	}
    };
    
    class Cat :public Animal
    {
    public:
    	void speak()
    	{
    		cout << "小猫在说话" << endl;
    	}
    };
    
    class Dog :public Animal
    {
    public:
    
    	void speak()
    	{
    		cout << "小狗在说话" << endl;
    	}
    
    };
    //我们希望传入什么对象,那么就调用什么对象的函数
    //如果函数地址在编译阶段就能确定,那么静态联编
    //如果函数地址在运行阶段才能确定,就是动态联编
    
    void DoSpeak(Animal & animal)
    {
    	animal.speak();
    }
    //
    //多态满足条件: 
    //1、有继承关系
    //2、子类重写父类中的虚函数
    //多态使用:
    //父类指针或引用指向子类对象
    
    void test01()
    {
    	Cat cat;
    	DoSpeak(cat);
    
    
    	Dog dog;
    	DoSpeak(dog);
    }
    
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:

    多态满足条件

    • 有继承关系
    • 子类重写父类中的虚函数

    多态使用条件

    • 父类指针或引用指向子类对象

    重写:函数返回值类型 函数名 参数列表 完全一致称为重写

    4.7.2 多态案例一-计算器类

    案例描述:

    分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类

    多态的优点:

    • 代码组织结构清晰
    • 可读性强
    • 利于前期和后期的扩展以及维护

    示例:

    //普通实现
    class Calculator {
    public:
    	int getResult(string oper)
    	{
    		if (oper == "+") {
    			return m_Num1 + m_Num2;
    		}
    		else if (oper == "-") {
    			return m_Num1 - m_Num2;
    		}
    		else if (oper == "*") {
    			return m_Num1 * m_Num2;
    		}
    		//如果要提供新的运算,需要修改源码
    	}
    public:
    	int m_Num1;
    	int m_Num2;
    };
    
    void test01()
    {
    	//普通实现测试
    	Calculator c;
    	c.m_Num1 = 10;
    	c.m_Num2 = 10;
    	cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;
    
    	cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;
    
    	cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
    }
    
    
    
    //多态实现
    //抽象计算器类
    //多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
    class AbstractCalculator
    {
    public :
    
    	virtual int getResult()
    	{
    		return 0;
    	}
    
    	int m_Num1;
    	int m_Num2;
    };
    
    //加法计算器
    class AddCalculator :public AbstractCalculator
    {
    public:
    	int getResult()
    	{
    		return m_Num1 + m_Num2;
    	}
    };
    
    //减法计算器
    class SubCalculator :public AbstractCalculator
    {
    public:
    	int getResult()
    	{
    		return m_Num1 - m_Num2;
    	}
    };
    
    //乘法计算器
    class MulCalculator :public AbstractCalculator
    {
    public:
    	int getResult()
    	{
    		return m_Num1 * m_Num2;
    	}
    };
    
    
    void test02()
    {
    	//创建加法计算器
    	AbstractCalculator *abc = new AddCalculator;
    	abc->m_Num1 = 10;
    	abc->m_Num2 = 10;
    	cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;
    	delete abc;  //用完了记得销毁
    
    	//创建减法计算器
    	abc = new SubCalculator;
    	abc->m_Num1 = 10;
    	abc->m_Num2 = 10;
    	cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;
    	delete abc;  
    
    	//创建乘法计算器
    	abc = new MulCalculator;
    	abc->m_Num1 = 10;
    	abc->m_Num2 = 10;
    	cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;
    	delete abc;
    }
    
    int main() {
    
    	//test01();
    
    	test02();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:C++开发提倡利用多态设计程序架构,因为多态优点很多

    4.7.3 纯虚函数和抽象类

    在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容

    因此可以将虚函数改为纯虚函数

    纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;

    当类中有了纯虚函数,这个类也称为抽象类

    抽象类特点

    • 无法实例化对象
    • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类

    示例:

    class Base
    {
    public:
    	//纯虚函数
    	//类中只要有一个纯虚函数就称为抽象类
    	//抽象类无法实例化对象
    	//子类必须重写父类中的纯虚函数,否则也属于抽象类
    	virtual void func() = 0;
    };
    
    class Son :public Base
    {
    public:
    	virtual void func() 
    	{
    		cout << "func调用" << endl;
    	};
    };
    
    void test01()
    {
    	Base * base = NULL;
    	//base = new Base; // 错误,抽象类无法实例化对象
    	base = new Son;
    	base->func();
    	delete base;//记得销毁
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.7.4 多态案例二-制作饮品

    案例描述:

    制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料

    利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶

    示例:

    //抽象制作饮品
    class AbstractDrinking {
    public:
    	//烧水
    	virtual void Boil() = 0;
    	//冲泡
    	virtual void Brew() = 0;
    	//倒入杯中
    	virtual void PourInCup() = 0;
    	//加入辅料
    	virtual void PutSomething() = 0;
    	//规定流程
    	void MakeDrink() {
    		Boil();
    		Brew();
    		PourInCup();
    		PutSomething();
    	}
    };
    
    //制作咖啡
    class Coffee : public AbstractDrinking {
    public:
    	//烧水
    	virtual void Boil() {
    		cout << "煮农夫山泉!" << endl;
    	}
    	//冲泡
    	virtual void Brew() {
    		cout << "冲泡咖啡!" << endl;
    	}
    	//倒入杯中
    	virtual void PourInCup() {
    		cout << "将咖啡倒入杯中!" << endl;
    	}
    	//加入辅料
    	virtual void PutSomething() {
    		cout << "加入牛奶!" << endl;
    	}
    };
    
    //制作茶水
    class Tea : public AbstractDrinking {
    public:
    	//烧水
    	virtual void Boil() {
    		cout << "煮自来水!" << endl;
    	}
    	//冲泡
    	virtual void Brew() {
    		cout << "冲泡茶叶!" << endl;
    	}
    	//倒入杯中
    	virtual void PourInCup() {
    		cout << "将茶水倒入杯中!" << endl;
    	}
    	//加入辅料
    	virtual void PutSomething() {
    		cout << "加入枸杞!" << endl;
    	}
    };
    
    //业务函数
    void DoWork(AbstractDrinking* drink) {
    	drink->MakeDrink();
    	delete drink;
    }
    
    void test01() {
    	DoWork(new Coffee);
    	cout << "--------------" << endl;
    	DoWork(new Tea);
    }
    
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    4.7.5 虚析构和纯虚析构

    多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码

    解决方式:将父类中的析构函数改为虚析构或者纯虚析构

    虚析构和纯虚析构共性:

    • 可以解决父类指针释放子类对象
    • 都需要有具体的函数实现

    虚析构和纯虚析构区别:

    • 如果是纯虚析构,该类属于抽象类,无法实例化对象

    虚析构语法:

    virtual ~类名(){}

    纯虚析构语法:

    virtual ~类名() = 0;

    类名::~类名(){}

    示例:

    class Animal {
    public:
    
    	Animal()
    	{
    		cout << "Animal 构造函数调用!" << endl;
    	}
    	virtual void Speak() = 0;
    
    	//析构函数加上virtual关键字,变成虚析构函数
    	//virtual ~Animal()
    	//{
    	//	cout << "Animal虚析构函数调用!" << endl;
    	//}
    
    
    	virtual ~Animal() = 0;
    };
    
    Animal::~Animal()
    {
    	cout << "Animal 纯虚析构函数调用!" << endl;
    }
    
    //和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。
    
    class Cat : public Animal {
    public:
    	Cat(string name)
    	{
    		cout << "Cat构造函数调用!" << endl;
    		m_Name = new string(name);
    	}
    	virtual void Speak()
    	{
    		cout << *m_Name <<  "小猫在说话!" << endl;
    	}
    	~Cat()
    	{
    		cout << "Cat析构函数调用!" << endl;
    		if (this->m_Name != NULL) {
    			delete m_Name;
    			m_Name = NULL;
    		}
    	}
    
    public:
    	string *m_Name;
    };
    
    void test01()
    {
    	Animal *animal = new Cat("Tom");
    	animal->Speak();
    
    	//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏
    	//怎么解决?给基类增加一个虚析构函数
    	//虚析构函数就是用来解决通过父类指针释放子类对象
    	delete animal;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:
    ​ 1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象
    ​ 2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
    ​ 3. 拥有纯虚析构函数的类也属于抽象类

    4.7.6 多态案例三-电脑组装

    案例描述:

    电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)

    将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商

    创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口

    测试时组装三台不同的电脑进行工作

    示例:

    #include<iostream>
    using namespace std;
    
    //抽象CPU类
    class CPU
    {
    public:
    	//抽象的计算函数
    	virtual void calculate() = 0;
    };
    
    //抽象显卡类
    class VideoCard
    {
    public:
    	//抽象的显示函数
    	virtual void display() = 0;
    };
    
    //抽象内存条类
    class Memory
    {
    public:
    	//抽象的存储函数
    	virtual void storage() = 0;
    };
    
    //电脑类
    class Computer
    {
    public:
    	Computer(CPU * cpu, VideoCard * vc, Memory * mem)
    	{
    		m_cpu = cpu;
    		m_vc = vc;
    		m_mem = mem;
    	}
    
    	//提供工作的函数
    	void work()
    	{
    		//让零件工作起来,调用接口
    		m_cpu->calculate();
    
    		m_vc->display();
    
    		m_mem->storage();
    	}
    
    	//提供析构函数 释放3个电脑零件
    	~Computer()
    	{
    
    		//释放CPU零件
    		if (m_cpu != NULL)
    		{
    			delete m_cpu;
    			m_cpu = NULL;
    		}
    
    		//释放显卡零件
    		if (m_vc != NULL)
    		{
    			delete m_vc;
    			m_vc = NULL;
    		}
    
    		//释放内存条零件
    		if (m_mem != NULL)
    		{
    			delete m_mem;
    			m_mem = NULL;
    		}
    	}
    
    private:
    
    	CPU * m_cpu; //CPU的零件指针
    	VideoCard * m_vc; //显卡零件指针
    	Memory * m_mem; //内存条零件指针
    };
    
    //具体厂商
    //Intel厂商
    class IntelCPU :public CPU
    {
    public:
    	virtual void calculate()
    	{
    		cout << "Intel的CPU开始计算了!" << endl;
    	}
    };
    
    class IntelVideoCard :public VideoCard
    {
    public:
    	virtual void display()
    	{
    		cout << "Intel的显卡开始显示了!" << endl;
    	}
    };
    
    class IntelMemory :public Memory
    {
    public:
    	virtual void storage()
    	{
    		cout << "Intel的内存条开始存储了!" << endl;
    	}
    };
    
    //Lenovo厂商
    class LenovoCPU :public CPU
    {
    public:
    	virtual void calculate()
    	{
    		cout << "Lenovo的CPU开始计算了!" << endl;
    	}
    };
    
    class LenovoVideoCard :public VideoCard
    {
    public:
    	virtual void display()
    	{
    		cout << "Lenovo的显卡开始显示了!" << endl;
    	}
    };
    
    class LenovoMemory :public Memory
    {
    public:
    	virtual void storage()
    	{
    		cout << "Lenovo的内存条开始存储了!" << endl;
    	}
    };
    
    
    void test01()
    {
    	//第一台电脑零件
    	CPU * intelCpu = new IntelCPU;
    	VideoCard * intelCard = new IntelVideoCard;
    	Memory * intelMem = new IntelMemory;
    
    	cout << "第一台电脑开始工作:" << endl;
    	//创建第一台电脑
    	Computer * computer1 = new Computer(intelCpu, intelCard, intelMem);
    	computer1->work();
    	delete computer1;
    
    	cout << "-----------------------" << endl;
    	cout << "第二台电脑开始工作:" << endl;
    	//第二台电脑组装
    	Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);;
    	computer2->work();
    	delete computer2;
    
    	cout << "-----------------------" << endl;
    	cout << "第三台电脑开始工作:" << endl;
    	//第三台电脑组装
    	Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);;
    	computer3->work();
    	delete computer3;
    
    }
    

    5 文件操作

    程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放

    通过文件可以将数据持久化

    C++中对文件操作需要包含头文件 < fstream >

    文件类型分为两种:

    1. 文本文件 - 文件以文本的ASCII码形式存储在计算机中
    2. 二进制文件 - 文件以文本的二进制形式存储在计算机中,用户一般不能直接读懂它们

    操作文件的三大类:

    1. ofstream:写操作
    2. ifstream: 读操作
    3. fstream : 读写操作

    5.1文本文件

    5.1.1写文件

    写文件步骤如下:

    1. 包含头文件

      #include <fstream>

    2. 创建流对象

      ofstream ofs;

    3. 打开文件

      ofs.open("文件路径",打开方式);

    4. 写数据

      ofs << "写入的数据";

    5. 关闭文件

      ofs.close();

    文件打开方式:

    打开方式 解释
    ios::in 为读文件而打开文件
    ios::out 为写文件而打开文件
    ios::ate 初始位置:文件尾
    ios::app 追加方式写文件
    ios::trunc 如果文件存在先删除,再创建
    ios::binary 二进制方式

    注意: 文件打开方式可以配合使用,利用|操作符

    例如:用二进制方式写文件 ios::binary | ios:: out

    示例:

    #include <fstream>
    
    void test01()
    {
    	ofstream ofs;
    	ofs.open("test.txt", ios::out);
    
    	ofs << "姓名:张三" << endl;
    	ofs << "性别:男" << endl;
    	ofs << "年龄:18" << endl;
    
    	ofs.close();
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:

    • 文件操作必须包含头文件 fstream
    • 读文件可以利用 ofstream ,或者fstream类
    • 打开文件时候需要指定操作文件的路径,以及打开方式
    • 利用<<可以向文件中写数据
    • 操作完毕,要关闭文件

    5.1.2读文件

    读文件与写文件步骤相似,但是读取方式相对于比较多

    读文件步骤如下:

    1. 包含头文件

      #include <fstream>

    2. 创建流对象

      ifstream ifs;

    3. 打开文件并判断文件是否打开成功

      ifs.open("文件路径",打开方式);

    4. 读数据

      四种方式读取

    5. 关闭文件

      ifs.close();

    示例:

    #include <fstream>
    #include <string>
    void test01()
    {
    	ifstream ifs;
    	ifs.open("test.txt", ios::in);
    
    	if (!ifs.is_open())
    	{
    		cout << "文件打开失败" << endl;
    		return;
    	}
    
    	//第一种方式
    	//char buf[1024] = { 0 };
    	//while (ifs >> buf)
    	//{
    	//	cout << buf << endl;
    	//}
    
    	//第二种
    	//char buf[1024] = { 0 };
    	//while (ifs.getline(buf,sizeof(buf)))
    	//{
    	//	cout << buf << endl;
    	//}
    
    	//第三种
    	//string buf;
    	//while (getline(ifs, buf))
    	//{
    	//	cout << buf << endl;
    	//}
    
    	char c;
    	while ((c = ifs.get()) != EOF)
    	{
    		cout << c;
    	}
    
    	ifs.close();
    
    
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:

    • 读文件可以利用 ifstream ,或者fstream类
    • 利用is_open函数可以判断文件是否打开成功
    • close 关闭文件

    5.2 二进制文件

    以二进制的方式对文件进行读写操作

    打开方式要指定为 ios::binary

    5.2.1 写文件

    二进制方式写文件主要利用流对象调用成员函数write

    函数原型 :ostream& write(const char * buffer,int len);

    参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数

    示例:

    #include <fstream>
    #include <string>
    
    class Person
    {
    public:
    	char m_Name[64];
    	int m_Age;
    };
    
    //二进制文件  写文件
    void test01()
    {
    	//1、包含头文件
    
    	//2、创建输出流对象
    	ofstream ofs("person.txt", ios::out | ios::binary);
    	
    	//3、打开文件
    	//ofs.open("person.txt", ios::out | ios::binary);
    
    	Person p = {"张三"  , 18};
    
    	//4、写文件
    	ofs.write((const char *)&p, sizeof(p));
    
    	//5、关闭文件
    	ofs.close();
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:

    • 文件输出流对象 可以通过write函数,以二进制方式写数据

    5.2.2 读文件

    二进制方式读文件主要利用流对象调用成员函数read

    函数原型:istream& read(char *buffer,int len);

    参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数

    示例:

    #include <fstream>
    #include <string>
    
    class Person
    {
    public:
    	char m_Name[64];
    	int m_Age;
    };
    
    void test01()
    {
    	ifstream ifs("person.txt", ios::in | ios::binary);
    	if (!ifs.is_open())
    	{
    		cout << "文件打开失败" << endl;
    	}
    
    	Person p;
    	ifs.read((char *)&p, sizeof(p));
    
    	cout << "姓名: " << p.m_Name << " 年龄: " << p.m_Age << endl;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    
    • 文件输入流对象 可以通过read函数,以二进制方式读数据
  • 相关阅读:
    Python之路【第十九篇】:前端CSS
    大数据之路【第十五篇】:数据挖掘--推荐算法
    大数据之路【第十四篇】:数据挖掘--推荐算法(Mahout工具)
    Python之路【第十八篇】:前端HTML
    大数据之路【第十三篇】:数据挖掘---中文分词
    大数据之路【第十二篇】:数据挖掘--NLP文本相似度
    Python之路【第十七篇】:Python并发编程|协程
    Python之路【第十六篇】:Python并发编程|进程、线程
    大数据之路【第十篇】:kafka消息系统
    Python之路【第十五篇】开发FTP多线程程序
  • 原文地址:https://www.cnblogs.com/chance0x1/p/12994530.html
Copyright © 2020-2023  润新知