• BZOJ 1492 货币兑换 Cash CDQ分治


    这题n2算法就是一个维护上凸包的过程.

    也可以用CDQ分治做.

    我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分.

    好处是思路清晰,避免了凸包的插入删除,坏处是多了一个log.

    这题数据很水,同时注意精度.

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<ctime>
    #include<string>
    #include<iomanip>
    #include<algorithm>
    #include<map>
    using namespace std;
    #define LL long long
    #define FILE "cash"
    #define up(i,j,n) for(int i=j;i<=n;++i)
    #define db double
    #define ull unsigned long long
    #define eps 1e-12
    #define pii pair<int,int>
    int read(){
    	int x=0,f=1,ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    	return f*x;
    }
    const int maxn=200010,maxm=20000,limit=1e6,mod=(int)(7+1e9+0.1);
    const db inf=(1e18);
    template<class T>bool cmax(T& a,T b){return a<b?a=b,true:false;}
    template<class T>bool cmin(T& a,T b){return a>b?a=b,true:false;}
    template<class T>T min(T& a,T& b){return a<b?a:b;}
    template<class T>T max(T& a,T& b){return a>b?a:b;}
    int n,N,M;
    db f[maxn],X[maxn],Y[maxn],A[maxn],B[maxn],sp[maxn];
    struct vec{
    	db x,y;
    	vec(db x=0,db y=0):x(x),y(y){}
    	vec operator+(const vec& a){return vec(x+a.x,y+a.y);}
    	vec operator-(const vec& a){return vec(x-a.x,y-a.y);}
    	vec operator*(db b){return vec(x*b,y*b);}
    }q[maxn],w[maxn];
    int dcmp(db x){if(fabs(x)<eps)return 0;return x>0?1:-1;}
    bool operator<(vec a,vec b){return a.x<b.x||(!dcmp(a.x-b.x)&&a.y<b.y);}
    db dot(vec a,vec b){return a.x*b.x+a.y*b.y;}
    db cro(vec a,vec b){return a.x*b.y-a.y*b.x;}
    db len(vec a){return sqrt(dot(a,a));}
    void build(int l,int r){
    	N=0;
    	up(i,l,r)q[++N]=vec(f[i]*X[i],f[i]*Y[i]);
    	sort(q+1,q+N+1);
    	M=0;
    	w[++M]=q[1];
    	up(i,2,N){
    		while(M>1&&dcmp(cro(w[M]-w[M-1],q[i]-w[M]))>=0)M--;
    		w[++M]=q[i];
    	}
    }
    db getK(vec a,vec b){
    	if(!dcmp(b.x-a.x))return inf;
    	if(!dcmp(b.y-a.y))return -inf;
    	return (b.y-a.y)/(b.x-a.x);
    }
    vec query(db sp){
    	int left=2,right=M-1;
    	if(getK(w[M],w[M-1])>sp)return w[M];
    	if(getK(w[1],w[2])<sp)return w[1];
    	while(left+1<right){
    		int mid=(left+right)>>1;
    		if(getK(w[mid],w[mid+1])<sp&&getK(w[mid-1],w[mid])>sp)return w[mid];
    		if(getK(w[mid],w[mid-1])<sp&&getK(w[mid],w[mid+1])<sp)right=mid;
    		else left=mid;
    	}
    	int mid=left;
    	if(getK(w[mid],w[mid+1])<sp&&getK(w[mid-1],w[mid])>sp)return w[mid];
    	mid=right;
    	if(getK(w[mid],w[mid+1])<sp&&getK(w[mid-1],w[mid])>sp)return w[mid];
    	return w[left];
    }
    void cdq(int l,int r){
    	if(l==r){
    		cmax(f[l],f[l-1]);
    		//printf("%d %.3lf
    ",l,f[l]);
    		return;
    	}
    	int mid=(l+r)>>1;
    	cdq(l,mid);
    	build(l,mid);
    	up(i,mid+1,r){
    		vec k=query(sp[i]);
    		cmax(f[i],f[i-1]);
    		cmax(f[i],k.x*A[i]+k.y*B[i]);
    	}
    	cdq(mid+1,r);
    }
    int main(){
    	freopen(FILE".in","r",stdin);
    	freopen(FILE".out","w",stdout);
    	scanf("%d%lf",&n,&f[0]);
    	up(i,1,n){
    		db x,y,k;
    		scanf("%lf%lf%lf",&x,&y,&k);
    		A[i]=x,B[i]=y;
    		X[i]=k/(x*k+y);
    		Y[i]=1.0/(x*k+y);
    		sp[i]=-A[i]/B[i];
    	}
    	cdq(1,n);
    	printf("%.3lf
    ",f[n]);
    	return 0;
    }
    

      

  • 相关阅读:
    1.1 What is the plug-in?
    Chapter 8 The Simplest Plug-in Solution
    Chapter 7 Resources in Plug-In(1)
    Chapter 1: Plug-in programing from past to the future
    Android插件化的兼容性(下):突破Android P中灰黑名单的限制
    Android插件化的兼容性(中):Android P的适配
    Android插件化的兼容性(上):Android O的适配
    pandas 学习 第12篇:DataFrame 避免链式赋值
    NumPy 学习 第三篇:矢量化和广播
    Wait Type 整理
  • 原文地址:https://www.cnblogs.com/chadinblog/p/6541276.html
Copyright © 2020-2023  润新知