版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明
http://maoyu2010.blogbus.com/logs/103213871.html
花了一天的时间学了点博弈,算是懂了一点点基础的知识吧,下面分享一点我的经验,仅供不懂博弈的菜鸟尽快入门,大牛请无视。
首先来玩个游戏,引用杭电课件上的:
(1) 玩家: 2 人;
(2) 道具: 23 张扑克牌;
(3) 规则:
游戏双方轮流取牌;
每人每次仅限于取1 张、 2 张或 3 张牌;
扑克牌取光,则游戏结束;
最后取牌的一方为胜者。
想一下。。
首先申明一点,博弈的讨论是在大家都玩的最好的情况下讨论的。(如果2 个玩家智商有差别,那就没法讨论了~~~~开个玩笑哈。)
介绍概念:P 点 即必败点,某玩家位于此点,只要对方无失误,则必败;
N点 即必胜点,某玩家位于此点,只要自己无失误,则必胜。
定理:
一、 所有终结点都是必败点P (上游戏中,轮到谁拿牌,还剩 0 张牌的时候,此人就输了,因为无牌可取);
二、所有一步能走到必败点P 的就是 N 点;
三、通过一步操作只能到N 点的就是 P 点;
自己画下图看看。
x : 0 1 2 3 4 5 6 7 8 9 10 。。。
pos: P N N N P N N N P N N 。。。
所以若玩家甲位于N 点。只要每次把 P 点让给对方,则甲必胜;
反之,若玩家甲位于P 点,他每次只能走到 N 点,而只要乙每次把 P 点让给甲,甲必败;
这里好好理解下;
如果上面的理解的。请解决下面的题目:HDU 1846 2147 (注意题目限制内存)(先 2 道练练手,做不出的话提示:找规律)
接下来介绍Nim 游戏(同样引用杭电上的,懒的打字)
1.有两个玩家;
2. 有三堆扑克牌(比如:可以分别是 5 , 7 , 9 张);
3. 游戏双方轮流操作;
4. 玩家的每次操作是选择其中某一堆牌,然后从中取走任意张;
5.最后一次取牌的一方为获胜方;
想一会:
还记得刚才说的P 点和 N 点吗? P :必败点, N :必胜点
先给出结论,这里要用到位运算,异或:^
游戏的某个位置(x1,x2,x3) x1,x2,x3 表示 3 堆的个数。当且仅当 x1^x2^x3=0 时,此点才是必败点 P ;
结论可以推广到一般情况,即有n 堆, (x1,x2,x3,...xn) 当且仅当 x1^x2^x3...^xn=0 时,此点才是必败点 P ;
如要看证明过程,链接在此 http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617 ,看不懂的可以问 我(汗。。)
练习:HDU 2188 2149 (做不出的话先看下面的,然后多思考)
下面介绍sg 函数(解决博弈问题的王道)
sg 即 Graph Game ,把博弈游戏抽象成有向无环图
(1) 有向无环图
(2) 玩家 1 先移动,起点是 x0
(3) 两个玩家轮流移动
(4) 对于顶点 x, 玩家能够移动到的顶点集记为 F(x).
(5) 不能移动的玩家会输掉游戏
首先定义mex(minimal excludant) 运算,这是施加于一个集合的运算,表示 最小的不属于这个集合的非负整数 。例如mex{0,1,2,4}=3 、 mex{2,3,5}=0 、 mex{}=0 。
定义: 一个图的 Sprague-Grundy 函数 (X,F) 是定义在 X 上的非负函数 g(x) ,并且满足:
g(x) = mex{g(y) : y∈ F(x)}
看到这里先好好理解一下sg 值是怎么求的;
如果在取子游戏中每次只能取{1,2,3} ,那么各个数的 SG 值是多少?
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14. . .
g(x) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2. . .
看看这个和上面那个图的规律:
P-点 : 即令 g(x) = 0 的 x 点!
N-点 : 即令 g(x) > 0 的 x 点!
练习 HDU 1847 1849 1850 (做不出的话先看下面的,然后多思考)
最后看下组合博弈,就是把简单的游戏组合起来,比如3 堆的可以看成 3 个一堆的游戏。
定理:
假设游戏 Gi 的 SG 函数是 gi, i=1,…,n, 则
G = G1 + … + Gn 的 SG 函数是
g(x1,…,xn) = g1(x1)⊕…⊕gn(xn).
其中那个符合就是异或^
看看是不是和Nim 游戏的结论差不多?
如果想理解原理链接在此: http://www.cnitblog.com/weiweibbs/articles/42735.html
看完以上的,做完以下的练习。能理解完基本差不多可以算入门了:
HDU 1848 1517 1536(做不出就思考,思考,多看几遍)
上一期的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……这时看上去问题复杂了很多,但相信你如果掌握了本节的内容,类似的千变万化的问题都是不成问题的。
现在我们来研究一个看上去似乎更为一般的游戏:给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Garundy函数。
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继}。
来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。
以上这三句话表明,顶点x所代表的postion是P-position当且仅当g(x)=0(跟P-positioin/N-position的定义的那三句话是完全对应的)。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?
让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i<k,都存在x的一个后继y满足g(y)=i。也就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏,Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!
对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,...,an),再设局面(a1,a2,...,an)时的Nim游戏的一种必胜策略是把ai变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。
其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton's Theorem几乎是完全相同的,只需要适当的改几个名词就行了。
刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。
所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^...^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。
再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!
回到本文开头的问题。有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?
所以,对于我们来说,SG函数与“游戏的和”的概念不是让我们去组合、制造稀奇古怪的游戏,而是把遇到的看上去有些复杂的游戏试图分成若干个子游戏,对于每个比原游戏简化很多的子游戏找出它的SG函数,然后全部异或起来就得到了原游戏的SG函数,就可以解决原游戏了。这种“分而治之”的思想在下一节介绍的“翻硬币游戏”中将被应用得淋漓尽致。还是敬请期待。
以上内容转载自某大牛。